Physics - Forces Points in bold are HT only
\(\left.\begin{array}{|l|l|}\hline Content \& End \\
\hline Name contact and non-contact forces and describe their interaction \& \\
\hline Define scalar and vector quantities and give examples of each \& \\
\hline Calculate resultant forces \& \\
\hline Define weight and use w=m x g to calculate any one of those values \& \\
\hline Define 'centre of mass' \& \\
\hline Draw free body diagrams to scale including resolving forces at different angles \& \\
\hline Know the equation to calculate work done and apply this to find work done, force or distance \& \\
\hline Describe the relationship between joules and newton-metres and convert between them \& \\
\hline Give examples of forces involved in stretching or compression and explain the difference between elastic \\

deformation and inelastic deformation\end{array}\right]\)| Describe the features of a graph of force applied versus the extension of a spring | |
| :--- | :--- |
| Know Hooke's Law ($\mathrm{f}=$ ke) and apply it in stretching or compression scenarios | |
| Calculate work done during stretching or compressing using e= $1 / 2 \mathrm{k}$ x ${ }^{2}$ | |
| Interpret distance-time graphs to calculate velocity and total distance moved | |
| Explain the difference between distance and displacement | |
| Know typical values for speed for walking, running, cycling and sensible values for car, train and airplane speeds | |
| Describe the difference between velocity and speed and calculate them using s=d/t | |
| Describe circular motion in terms of speed and direction | |
| Interpret distance time graphs to find speed, including drawing a tangent if the object is accelerating | |
| Describe what is meant by acceleration | |

Content	End
Calculate the acceleration or deceleration of an object using a=v-u/t, using negative values to represent deceleration	
Use uniform acceleration equation to calculate acceleration, velocity or distance	
Know that acceleration under gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$	
Describe the change in forces that occur during free fall of an object through a fluid	
Define terminal velocity	
Apply Newton's first law to predict the effect of balanced and unbalanced forces on stationary and moving objects	
Explain what is meant by 'inertia'	
Use Newton's second law (f=ma) to calculate force, mass or acceleration Apply Newton's third law to equilibrium situations - ie describe how forces exerted by two objects interacting are equal and opposite Define the terms stopping distance, thinking distance and braking distance and know how speed affects overall stopping distance Explain how reaction time can affect thinking distance and how this can be measured Dehicles wher large decelerations are dangerous and estimate values forces involved in deceleration of road 	

