Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

Paper 1F

GCSE CHEMISTRY

Foundation Tier

Specimen 2018 (set 2)

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

01.4	Which diagram shows a polymer? [1 mark] Tick one box.
	A B C D E
	A chlorine atom has 7 electrons in the outer shell. Two chlorine atoms covalently bond to form a chlorine molecule, Cl_2
0 1 . 5	Figure 2 is a dot and cross diagram showing the outer shells and some electrons in a chlorine molecule.
	Complete the dot and cross diagram.
	Show only the electrons in the outer shell. [1 mark]
	Figure 2
	Question 1 continues on the next page

Turn over ►

Turn over for the next question

02	This question is about atomic structure. Figure 4 represents the structure of a lithium atom.
	Figure 4
02.1	Name the particle in the atom that has a positive charge. [1 mark]
02.2	Name the particle in the atom that has the smallest mass. [1 mark]
02.3	Complete the sentences. Choose the answers from the box. [2 marks]
	3 4 7 10
	The mass number of the lithium atom is The number of neutrons in the lithium atom is

02.4	What are lithium atoms with different numbers of neutrons called? Tick one box.	[1 mark]
	Compounds	
	lons	
	Isotopes	
	Molecules	
02.5	Name the particle in the atom discovered by James Chadwick.	[1 mark]
	Question 2 continues on the next page	

0 2 . 6 An element has two isotopes. Table 1 shows information about the isotopes. Table 1 Mass number Percentage (%) abundance Isotope 1 10 20 Isotope 2 11 80 Calculate the relative atomic mass (A_r) of the element. Use the equation: $A_r = \frac{(\text{mass number } \times \text{ percentage}) \text{ of isotope } 1 + (\text{mass number } \times \text{ percentage}) \text{ of isotope } 2$ 100 Give your answer to 1 decimal place. [2 marks] Relative atomic mass (A_r) =

;]
-
-
-
-
(s

This is the method used.

- 1. Measure 50 cm³ hydrochloric acid into a glass beaker.
- 2. Measure 1.0 g of potassium hydrogencarbonate.
- 3. Add the potassium hydrogencarbonate to the hydrochloric acid.
- 4. Stir until all the potassium hydrogencarbonate has reacted.
- 5. Record the lowest temperature reached.
- 6. Repeat steps 1–5 two more times.
- 7. Repeat steps 1–6 with different masses of potassium hydrogencarbonate.

0 3.1	Which is the most suitable apparatus to use to measure 50 cm ³ of hydrochloric acid? [1 mark]
	Tick one box.
	Balance
	Gas syringe
	Measuring cylinder
0 3.2	The student used a glass beaker for the reaction.
	Suggest one change to the apparatus that would improve the accuracy of the results.
	Give a reason for your answer.
	[2 marks]
	Question 3 continues on the next page

Turn over ►

	Table 2 shows a set of results.				
	Table 2				
		Test 1	Test 2	Test 3	
	Lowest temperature in °C	16.1	15.8	15.9	
03.5	What is the range of the lowest temp From °C to Calculate the mean lowest temperat	perature?	°C		[1 mark]
	Use Table 2 .				[2 marks]
	Mean low	vest tempe	rature =		°C
03.7	How do the results show that the rea	action is er	dothermic	?	[1 mark]
	Question 3 continue	es on the i	next page		

03.9	Describe how the lowest temperature changes as the mass of potassium hydrogencarbonate added increases.	[3 marks]	
			15
	Turn over for the next question		
	-	Γurn over ►	

04.2	Batteries consist of cells.	
	Describe how a 6.0 V battery can be made from cells of voltage 1.5 V $$	[2 marks]
		[
0 4.3	Why do non-rechargeable cells stop producing electricity?	[2 marks]
		[]
		<u> </u>
04.4	Complete the word equation for the reaction in a hydrogen fuel cell.	[1 mark]
	hydrogen + → water	
045	Give two reasons why using a hydrogen fuel cell is seen as non-polluting	
	Use the equation in Question 04.4	
		[2 marks]
	۱	
	2	

0 5	This question is about metal oxides.	
	When sodium is heated in oxygen, sodium oxide is produced.	
0 5.1	Balance the equation for the reaction. Na + O ₂ \rightarrow 2 Na ₂ O	[1 mark]
05.2	Why is this an oxidation reaction?	[1 mark]
05.3	Sodium oxide is added to water and shaken. Universal indicator is added. The pH of the solution is 14 What is the colour of the universal indicator? Tick one box. Green Purple Red Yellow	[1 mark]

Question 5 continues on the next page

A student investigates the solubility of four metal oxides and four non-metal oxides in water.

The student tests the pH of the solutions formed.

 Table 4 shows the student's results.

Type of oxide	Oxide	Solubility in water	pH of solution
	Sodium oxide	Soluble	14
Matal avidaa	Calcium oxide	Soluble	10
	Magnesium oxide	Slightly soluble	9
	Zinc oxide	Insoluble	No solution formed
	Carbon dioxide	Soluble	5
Non motol ovideo	Sulfur dioxide	Soluble	2
Non-metal oxides	Phosphorus oxide	Soluble	1
	Silicon dioxide	Insoluble	No solution formed

Table 4

The student makes two conclusions.

Conclusion 1: 'All metal oxides produce alkaline solutions.'

Conclusion 2: 'All non-metal oxides produce acidic solutions.'

0 5.5	Explain why the student's conclusions are only partly correct.	
	Use information from Table 4 .	[4 marks]
0 5 6	Give an improved conclusion for metal oxides.	
	Use Table 4.	[2 marks]
	Turn over for the next question	

erms of electrons.	[4 magnet
	[4 mark
Question 6 continues on the next page	

	Zinc sulfate can be made by two methods.
	The equations for the two methods are:
	Method 1: ZnO + $H_2SO_4 \rightarrow ZnSO_4 + H_2O$
	Method 2: $ZnCO_3 + H_2SO_4 \rightarrow ZnSO_4 + H_2O + CO_2$
06.2	Calculate the percentage atom economy for making zinc sulfate in Method 1 .
	Use the equation:
	percentage atom economy =
	relative formula mass of ZnSO₄
	relative formula mass of ZnO + relative formula mass of H_2SO_4 × 100
	Give your answer to 3 significant figures
	[3 marks]
	Relative formula masses (M_r): ZnO = 81 H ₂ SO ₄ = 98 ZnSO ₄ = 161
	Percentage atom economy = %
06.3	Method 1 gives a higher percentage atom economy for making zinc sulfate than Method 2 .
	Give a reason why it is important to use a reaction with a high atom economy.
	[1 mark]

	A student uses 50 cm ³ of a zinc sulfate solution of 80 g/dm ³) 6.4
ution?	What mass of zinc sulfate is dissolved in 50 cm ³ of this zinc sulfate solu	
[2 marks]		
	Maaa	
g	Mass =	
	Turn over for the next question	

	The reaction produces a solution of sodium chloride.
	A student wants to obtain sodium chloride crystals from the sodium chloride solution.
	This is the method used.
	1. Add solid charcoal to the sodium chloride solution to remove the indicator colour.
	2 Romova the solid charges
	3. Evaporate the solution to dryness over a Bunsen burner.
0 7.2	Charcoal is not soluble in water.
	Suggest a method the student could use to remove the solid charcoal in Step 2
	[1 mark]
07.3	The student obtains a powdery white solid
	Suggest how the student could improve Step 3 of the method to obtain larger crystals instead of powder.
	[1 mark]

In the 1860s scientists were trying to organise elements.

Figure 12 shows the table published by John Newlands in 1865.

The elements are arranged in order of their atomic weights.

Н	Li	Be	В	С	Ν	0
F	Na	Mg	AI	Si	Р	S
CI	К	Ca	Cr	Ti	Mn	Fe
Co, Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce, La	Zr	Di, Mo	Ro, Ru
Pd	Ag	Cd	U	Sn	Sb	Те

Figure 12

Figure 13 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 13

	Н														
	Li	E	Зе		В			С		Ν		0		F	
	Na	Ν	Иg		Al			Si		Ρ		S		CI	
К	Cu	Ca	Zn	?		?	Ti	?	V	As	Cr	Se	Mn	Br	Fe Co Ni
Rb	Ag	Sr	Cd	Y		In	Zr	Sn	Nb	Sb	Мо	Те	?	I	Ru Rh Pd

08.6	Mendeleev's table became accepted by other scientists whereas Newlands' table was not.
	Evaluate Newlands' and Mendeleev's tables.
	You should include:
	a comparison of the tables
	 reasons why Mendeleev's table was more acceptable.
	Use Figure 12 and Figure 13 and your own knowledge. [6 marks]

Turn over ►

09	A student investigated the law of conservation of mass.
	The law of conservation of mass states that the mass of the products is equal to the mass of the reactants.
	This is the method used.
	1. Pour lead nitrate solution into a beaker labelled A .
	2. Pour potassium chromate solution into a beaker labelled B .
	3. Measure the mass of both beakers and contents.
	4. Pour the solution from beaker B into beaker A .
	5. Measure the mass of both beakers and contents again.
	When lead nitrate solution and potassium chromate solution are mixed, a reaction takes place.
	This is the equation for the reaction:
	$Pb(NO_3)_2(aq) + K_2CrO_4(aq) \rightarrow PbCrO_4(s) + 2KNO_3(aq)$
09.1	What would the student see when the reaction takes place? [1 mark]

09.2	Table 5 shows	the student's re	sults.			
			Table 5			
					Mass in g	
		Beaker A and c	contents befo	re mixing	128.71	
		Beaker B and c	contents befo	re mixing	128.97	
		Beaker A and c	contents after	mixing	154.10	
		Beaker B after	mixing		103.58	
	Show that the	law of conservati	on of mass is	strue.		
	Use the data fi	om Table 5 .				[2 marks]
09.3	What is the res	solution of the ba	lance used to	obtain the r	esults in Table !	52
	Tick one box					[1 mark]
					- г	
	0.01 g	0.1g		1 g	100 g	
		Question 9 con	tinues on th	e next page		

09.4	Calculate the relative formula mass (M_r) of lead nitrate Pb(NO ₃) ₂	[2 marks]
	Relative atomic masses (A_r): N = 14 O = 16 Pb = 207	
	Relative formula mass =	
09.5	The formula of potassium chromate is K_2CrO_4	
	The charge on the potassium ion is +1	
	What is the formula of the chromate ion?	
	Tick one box.	[1 mark]
	CrO ₄ ⁺	
	CrO ₄ ²⁺	
	CrO ₄ ⁻	
	CrO ₄ ²⁻	

09.6	Another student also tests the law of conservation of mass using the same method.								
	The student uses a different reaction.								
	This is the equation for the reaction.								
	$Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(I)$								
	Explain why this student's results would not appear to support the law of conservation								
	[3 marks]								
	Turn over for the next question								

10	A student makes a hypothesis: 'When different salt solutions are electrolysed with inert electrodes, the product
	at the negative electrode is always a metal'.
10.1	Describe how you would test this hypothesis in the laboratory.
	You should:
	draw a labelled diagram of the apparatus
	give the independent variable
	 describe what you would see at the negative electrode if the hypothesis is true. [5 marks]
	Diagram
	Independent variable
	Observation

10.2	The student's hypothesis is only partially correct.	
	Explain why the product at the negative electrode is not always a metal.	[2 marks]
10.3	Predict the product at the positive electrode in the electrolysis of:	
	sodium chloride solution	
	copper sulfate solution.	[2 marks]
	Sodium chloride solution	
	Copper sulfate solution	
	END OF QUESTIONS	

Copyright $\ensuremath{\mathbb{C}}$ 2017 AQA and its licensors. All rights reserved.