AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number \square

Surname
Forename(s) \qquad
Candidate signature \qquad

GCSE
 CHEMISTRY

Higher Tier

Paper 1H

Specimen 2018 (set 2)
Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

$\mathbf{0}$	$\mathbf{1}$

Figure 1

$\mathbf{J}, \mathbf{L}, \mathbf{M}, \mathbf{Q}$ and \mathbf{R} represent elements in the Periodic Table.

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$ Which element has four electrons in its outer shell?

Tick one box.
J

L \square
M \square
Q

R

$\mathbf{0}$	$\mathbf{1}$.	$\mathbf{2}$ Which two elements in Figure $\mathbf{1}$ are in the same period?

\qquad and \qquad

| 0 | $\mathbf{1}$ | $\mathbf{3}$ Which element reacts with potassium to form an ionic compound? |
| :--- | :--- | :--- | Tick one box.

J \square
L \square
M \square
Q

R

0	1.	4

Tick one box.
J

L

M

Q

R

$\mathbf{0}$	$\mathbf{1} .5$
$\mathbf{5}$	Which element has three electron shells?

Tick one box.
J

L

M

Q

R

Question 1 continues on the next page

In the 1860s scientists were trying to organise elements.

Figure 2 shows the table published by John Newlands in 1865.
The elements are arranged in order of their atomic weights.

Figure 2

H	Li	Be	B	C	N	O
F	Na	Mg	Al	Si	P	S
Cl	K	Ca	Cr	Ti	Mn	Fe
Co, Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce, La	Zr	Di, Mo	Ro, Ru
Pd	Ag	Cd	U	Sn	Sb	Te

Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

Figure 3

H							
Li	Be	B	C	N	0	F	
Na	Mg	Al	Si	P	S	Cl	
$\mathrm{K} \quad \mathrm{Cu}$	Ca Zn	? ?	$\mathrm{Ti} \quad ?$	V As	Cr Se	Mn Br	FeCoNi
$\mathrm{Rb} \quad \mathrm{Ag}$	Sr Cd	$\mathrm{Y} \quad \mathrm{ln}$	$\begin{array}{ll} \mathrm{Zr} & \mathrm{Sn} \end{array}$	Nb Sb	Mo Te	$? \quad 1$	Ru Rh Pd

| $\mathbf{0}$ | $\mathbf{1} .6$ Mendeleev's table became accepted by other scientists whereas Newlands' table |
| :--- | :--- | :--- | was not.

Evaluate Newlands' and Mendeleev's tables.
You should include:

- a comparison of the tables
- reasons why Mendeleev's table was more acceptable.

Use Figure 2 and Figure 3 and your own knowledge.
\qquad

$\mathbf{0}$	$\mathbf{2}$ A student investigated the law of conservation of mass.

The law of conservation of mass states that the mass of the products is equal to the mass of the reactants.

This is the method used.

1. Pour lead nitrate solution into a beaker labelled \mathbf{A}.
2. Pour potassium chromate solution into a beaker labelled \mathbf{B}.
3. Measure the mass of both beakers and contents.
4. Pour the solution from beaker \mathbf{B} into beaker \mathbf{A}.
5. Measure the mass of both beakers and contents again.

When lead nitrate solution and potassium chromate solution are mixed, a reaction takes place.

This is the equation for the reaction:

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq}) \rightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

$\mathbf{0}$	$\mathbf{2}$	$\mathbf{1}$ What would the student see when the reaction takes place?

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2} .2$ |
| :--- | :--- | :--- |

Table 1

	Mass in \mathbf{g}
Beaker \mathbf{A} and contents before mixing	128.71
Beaker \mathbf{B} and contents before mixing	128.97
Beaker \mathbf{A} and contents after mixing	154.10
Beaker \mathbf{B} after mixing	103.58

Show that the law of conservation of mass is true.
Use the data from Table 1.
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ What is the resolution of the balance used to obtain the results in Table 1? |
| :--- | :--- | :--- | Tick one box.

$0.01 \mathrm{~g} \square$
0.1 g \square
1 g \square
100 g \square

Question 2 continues on the next page

| $\mathbf{0}$ | $\mathbf{2} .4$ | Calculate the relative formula mass $\left(M_{r}\right)$ of lead nitrate $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ |
| :--- | :--- | :--- | :--- |

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{N}=14 \quad \mathrm{O}=16 \quad \mathrm{~Pb}=207$
\qquad
\qquad
\qquad
Relative formula mass = \qquad

| $\mathbf{0}$ | $\mathbf{2}$ | $\mathbf{5}$ |
| :--- | :--- | :--- | The formula of potassium chromate is $\mathrm{K}_{2} \mathrm{CrO}_{4}$ The charge on the potassium ion is +1

What is the formula of the chromate ion?
Tick one box.
CrO_{4}^{+} \square
$\mathrm{CrO}_{4}{ }^{2+}$ \square
CrO_{4}^{-}

$\mathrm{CrO}_{4}{ }^{2-}$

 The student uses a different reaction.

This is the equation for the reaction.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Explain why this student's results would not appear to support the law of conservation of mass.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Turn over for the next question

| 0 | 3 |
| :--- | :--- | A student makes a hypothesis:

'When different salt solutions are electrolysed with inert electrodes, the product at the negative electrode is always a metal'.

0	$\mathbf{3}$	$\mathbf{1}$ Describe how you would test this hypothesis in the laboratory.

You should:

- draw a labelled diagram of the apparatus
- give the independent variable
- describe what you would see at the negative electrode if the hypothesis is true.

Diagram

Independent variable \qquad
\qquad
Observation \qquad

$\mathbf{0}$	$\mathbf{3}$.	$\mathbf{2}$ The student's hypothesis is only partially correct. .4 .

Explain why the product at the negative electrode is not always a metal.
\qquad
\qquad
\qquad
\qquad

| 0 | 3 | . 3 Predict the product at the positive electrode in the electrolysis of: |
| :--- | :--- | :--- | :--- |

- sodium chloride solution
- copper sulfate solution.

Sodium chloride solution \qquad
Copper sulfate solution \qquad

0	4	This question is about atoms.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{1}$ What does the number 19 represent in ${ }_{9}^{19} \mathrm{~F}$?

| $\mathbf{0}$ | $\mathbf{4} .2$ How many atoms are present in one mole of fluorine atoms? |
| :--- | :--- | :--- |

Tick one box.
2.03×10^{26}

2.06×10^{23}

6.02×10^{23}

6.02×10^{26}

The nuclear model was developed after the alpha particle scattering experiment.
Compare the plum pudding model with the nuclear model of the atom.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4} \cdot \mathbf{4}$ An element has three isotopes. l

Table 2 shows the mass numbers and percentage of each isotope.

Table 2

	Isotope 1	Isotope 2	Isotope 3
Mass number	24	25	26
Percentage (\%)	78.6	10.1	11.3

Calculate the relative atomic mass $\left(A_{\mathrm{r}}\right)$ of the element.
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
Relative atomic mass = \qquad

| 0 | 5 |
| :--- | :--- | Some students investigated the energy changes occurring in the reaction between potassium hydrogencarbonate and hydrochloric acid.

The equation for the reaction is:

$$
\mathrm{KHCO}_{3}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{KCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

This is the method used.

1. Measure $50 \mathrm{~cm}^{3}$ hydrochloric acid into a glass beaker.
2. Measure the temperature of the hydrochloric acid.
3. Measure a given mass of potassium hydrogencarbonate.
4. Add the potassium hydrogencarbonate to the hydrochloric acid.
5. Stir until all the potassium hydrogencarbonate has reacted.
6. Record the lowest temperature reached.
7. Repeat three more times, using the same mass of potassium hydrogencarbonate.

Each student used a different mass of potassium hydrogencarbonate.

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{1}$	The method described will not give very accurate results.

Suggest one change to the apparatus that would improve the accuracy of the results. Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

Give one other control variable the students should use.
\qquad
\qquad

Table 3 shows one student's results.

Table 3

	Trial 1	Trial 2	Trial 3	Trial 4
Initial temperature in ${ }^{\circ} \mathrm{C}$	21.2	21.1	21.0	21.1
Final temperature in ${ }^{\circ} \mathrm{C}$	15.6	15.4	15.6	16.6
Temperature decrease in ${ }^{\circ} \mathrm{C}$	5.6	5.7	5.4	4.5

0	5	3	Calculate the mean temperature decrease for the results shown in Table 3.

Ignore any anomalous results.
Give your answer to 1 decimal place.
Give the uncertainty in your answer.
\qquad
\qquad
\qquad
Mean = \qquad ${ }^{\circ} \mathrm{C} \pm$ \qquad ${ }^{\circ} \mathrm{C}$

Figure 4 shows the students' results.

Figure 4

0	5	.4

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{5}$ Explain why the graph has this shape. ${ }^{2}$.

Use data from the graph.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{5}$	6	Suggest a possible reason for the anomalous points.

Do not include errors in measuring.
\qquad
\qquad

0	6

| $\mathbf{0}$ | $\mathbf{6} .1$ | Complete the dot and cross diagram to show the covalent bonding in a nitrogen |
| :--- | :--- | :--- | molecule, N_{2}

Show only the electrons in the outer shell.

0	6	2

Answer in terms of nitrogen's structure.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

Graphite and fullerenes are forms of carbon.

0	6	3

Explain why graphite has these properties.
Answer in terms of structure and bonding.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	6	4	Figure 5 shows a model of a Buckminsterfullerene molecule.

Figure 5

A lubricant is a substance that allows materials to move over each other easily. Suggest why Buckminsterfullerene is a good lubricant. Use Figure 5.
\qquad
\qquad
\qquad
\qquad

Question 6 continues on the next page

Silver can form cubic nanocrystals.
Figure 6 represents a silver nanocrystal.

Figure 6

0	6	5	A silver nanocrystal is a cube of side 20 nm

Calculate the surface area to volume ratio of the nanocrystal.
\qquad
\qquad
\qquad
\qquad
\qquad
Surface area to volume ratio = \qquad

Suggest why it is cheaper to use nanoparticles of silver rather than coarse particles of silver.
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$	A scientist produces zinc iodide $\left(\mathrm{ZnI}_{2}\right)$.

This is the method used.

1. Weigh 0.500 g of iodine.
2. Dissolve the iodine in ethanol.
3. Add an excess of zinc.
4. Stir the mixture until there is no further change.
5. Filter off the excess zinc.
6. Evaporate off the ethanol.

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{1}$ Ethanol is flammable.

Suggest how the scientist could carry out Step 6 safely.
\qquad
\qquad

$\mathbf{0}$	$\mathbf{7}$.	$\mathbf{2}$ Explain why the scientist adds excess zinc rather than excess iodine.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{7}$ | $\mathbf{3}$ Calculate the minimum mass of zinc that needs to be added to 0.500 g of iodine so |
| :--- | :--- | :--- | :--- | that the iodine fully reacts.

The equation for the reaction is:

$$
\mathrm{Zn}+\mathrm{I}_{2} \rightarrow \mathrm{ZnI}_{2}
$$

Relative atomic masses $\left(A_{r}\right): \quad \mathrm{Zn}=65 \quad \mathrm{I}=127$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Minimum mass of zinc $=$ \qquad g

Question 7 continues on the next page

A different scientist makes zinc iodide by the same method.
The scientist obtains 12.5 g of zinc iodide.
The percentage yield in this reaction is 92.0%.

| 0 | 7. | 4 |
| :--- | :--- | :--- | What is the maximum theoretical mass of zinc iodide produced in this reaction?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Maximum theoretical mass $=$ \qquad g

\qquad
\qquad

Calculate the mass of zinc iodide $\left(\mathrm{ZnI}_{2}\right)$ required to make $250 \mathrm{~cm}^{3}$ of this solution.
Relative atomic masses $\left(A_{\mathrm{r}}\right): \quad \mathrm{Zn}=65 \quad \mathrm{I}=127$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = \qquad g

Turn over for the next question

0	8	$C e l l s ~ c o n t a i n ~ c h e m i c a l s ~ w h i c h ~ r e a c t ~ t o ~ p r o d u c e ~ e l e c t r i c i t y . ~$

| $\mathbf{0}$ | $\mathbf{8}$ | .1 |
| :--- | :--- | :--- | Why can a rechargeable cell be recharged?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{8} .2$	Give two factors that affect the voltage produced by a cell.

1

2 \qquad
$\begin{array}{lll}\mathbf{0} & \mathbf{8} . & \mathbf{3} \text { Balance the half-equation for the reaction occurring at an electrode in one type of }\end{array}$ hydrogen fuel cell.

$$
\mathrm{H}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{e}^{-}
$$

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{4}$ Why is the fuel cell in Question $\mathbf{0 8 . 3}$ described as an alkaline fuel cell?

\qquad
\qquad

$\mathbf{0}$	$\mathbf{8}$	$\mathbf{5}$	Another type of fuel cell uses methanol instead of hydrogen.

Figure 7 represents the reaction in this fuel cell.

Figure 7

Table 4 shows the bond energies for the reaction.

Table 4

	C-H	C-O	O-H	O=O	C=O
Bond energy in $\mathrm{kJ} / \mathrm{mol}$	412	360	464	498	805

Calculate the overall energy change for the reaction.
Use Figure 7 and Table 4.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Overall energy change $=$ \qquad $\mathrm{kJ} / \mathrm{mol}$

| 0 | 9 |
| :--- | :--- | Citric acid is a weak acid.

$\mathbf{0}$	$\mathbf{9}$.	$\mathbf{1}$ Explain what is meant by a weak acid.

\qquad
\qquad
\qquad
\qquad

Question 9 continues on the next page

A student titrated citric acid with sodium hydroxide solution.
This is the method used.

1. Pipette $25.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution into a conical flask.
2. Add a few drops of thymol blue indicator to the sodium hydroxide solution.

Thymol blue is blue in alkali and yellow in acid.
3. Add citric acid solution from a burette until the end-point was reached.

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{2}$ Explain what would happen at the end-point of this titration.

Refer to the acid, the alkali and the indicator in your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 is used to measure the citric acid solution.
\qquad
\qquad
\qquad
\qquad

0	$\mathbf{9}$	$\mathbf{4}$ Table 5 shows the student's results.

Table 5

	Titration 1	Titration 2	Titration 3	Titration 4	Titration 5
Volume of citric acid solution in cm^{3}	13.50	12.10	11.10	12.15	12.15

The equation for the reaction is:

$$
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}+3 \mathrm{NaOH} \rightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7} \mathrm{Na}_{3}+3 \mathrm{H}_{2} \mathrm{O}
$$

The concentration of the sodium hydroxide was $0.102 \mathrm{~mol} / \mathrm{dm}^{3}$
Concordant results are those within $0.10 \mathrm{~cm}^{3}$ of each other.

Calculate the concentration of the citric acid in mol/ dm^{3}
Use only the concordant results from Table 5 in your calculation.
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Concentration $=$ \qquad $\mathrm{mol} / \mathrm{dm}^{3}$

END OF QUESTIONS

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2017 AQA and its licensors. All rights reserved.

