# AQA

| Please write clearly in b | block capitals. |                  |  |
|---------------------------|-----------------|------------------|--|
| Centre number             |                 | Candidate number |  |
| Surname                   |                 |                  |  |
| Forename(s)               |                 |                  |  |
| Candidate signature       |                 |                  |  |
| GCSE                      |                 |                  |  |

## GCSE **CHEMISTRY**

**Higher Tier** 

### Specimen 2018 (set 2)

Time allowed: 1 hour 45 minutes

Paper 1H

#### Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the periodic table (enclosed).

#### Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- · Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

#### Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.







In the 1860s scientists were trying to organise elements.

Figure 2 shows the table published by John Newlands in 1865.

The elements are arranged in order of their atomic weights.

| Figure | 2 |
|--------|---|
|--------|---|

| Н      | Li | Be | В      | С  | N      | 0      |
|--------|----|----|--------|----|--------|--------|
| F      | Na | Mg | AI     | Si | Р      | S      |
| CI     | К  | Са | Cr     | Ti | Mn     | Fe     |
| Co, Ni | Cu | Zn | Y      | In | As     | Se     |
| Br     | Rb | Sr | Ce, La | Zr | Di, Mo | Ro, Ru |
| Pd     | Ag | Cd | U      | Sn | Sb     | Те     |

Figure 3 shows the periodic table published by Dmitri Mendeleev in 1869.

#### Figure 3

|    | Н  |    |    |   |    |   |    |    |    |   |   |    |    |    |    |    |          |
|----|----|----|----|---|----|---|----|----|----|---|---|----|----|----|----|----|----------|
|    | Li | E  | Be |   | В  |   |    | С  |    | Ν |   | С  | )  |    | F  |    |          |
|    | Na | Ν  | Иg |   | AI |   |    | Si |    | Ρ |   | S  |    |    | CI |    |          |
| К  | Cu | Са | Zn | ? |    | ? | Ti | ?  | V  | A | s | Cr | Se | Mn |    | Br | Fe Co Ni |
| Rb | Ag | Sr | Cd | Y |    | n | Zr | Sn | Nb | S | b | Мо | Те | ?  |    | Ι  | Ru Rh Pd |



| 0 2  | A student investigated the law of conservation of mass.                                                     |  |  |  |  |  |  |
|------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      | The law of conservation of mass states that the mass of the products is equal to the mass of the reactants. |  |  |  |  |  |  |
|      | This is the method used.                                                                                    |  |  |  |  |  |  |
|      | 1. Pour lead nitrate solution into a beaker labelled <b>A</b> .                                             |  |  |  |  |  |  |
|      | 2. Pour potassium chromate solution into a beaker labelled <b>B</b> .                                       |  |  |  |  |  |  |
|      | 3. Measure the mass of both beakers and contents.                                                           |  |  |  |  |  |  |
|      | 4. Pour the solution from beaker <b>B</b> into beaker <b>A</b> .                                            |  |  |  |  |  |  |
|      | 5. Measure the mass of both beakers and contents again.                                                     |  |  |  |  |  |  |
|      | When lead nitrate solution and potassium chromate solution are mixed, a reaction takes place.               |  |  |  |  |  |  |
|      | This is the equation for the reaction:                                                                      |  |  |  |  |  |  |
|      | $Pb(NO_3)_2(aq) + K_2CrO_4(aq) \rightarrow PbCrO_4(s) + 2KNO_3(aq)$                                         |  |  |  |  |  |  |
| 02.1 | What would the student see when the reaction takes place? [1 mark]                                          |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |
|      |                                                                                                             |  |  |  |  |  |  |

| 02.2 | Table 1 shows the student's results.                                                     |                            |               |  |  |  |  |  |
|------|------------------------------------------------------------------------------------------|----------------------------|---------------|--|--|--|--|--|
|      | Table 1                                                                                  |                            |               |  |  |  |  |  |
|      |                                                                                          | Mass in g                  |               |  |  |  |  |  |
|      | Beaker <b>A</b> and contents before mixing                                               | 128.71                     |               |  |  |  |  |  |
|      | Beaker <b>B</b> and contents before mixing                                               | 128.97                     |               |  |  |  |  |  |
|      | Beaker <b>A</b> and contents after mixing                                                | 154.10                     |               |  |  |  |  |  |
|      | Beaker <b>B</b> after mixing                                                             | 103.58                     |               |  |  |  |  |  |
|      | Show that the law of conservation of mass is true.<br>Use the data from <b>Table 1</b> . |                            |               |  |  |  |  |  |
|      |                                                                                          |                            |               |  |  |  |  |  |
| 02.3 | What is the resolution of the balance used to obtain the re                              | esults in <b>Table 1</b> ′ | ?<br>[1 mark] |  |  |  |  |  |
|      | Tick <b>one</b> box.                                                                     | 100 g                      |               |  |  |  |  |  |
|      | Question 2 continues on the next page                                                    |                            |               |  |  |  |  |  |



| 02.4    | Calculate the relative formula mass ( $M_r$ ) of lead nitrate Pb(NO <sub>3</sub> ) <sub>2</sub> | [2 marks] |
|---------|-------------------------------------------------------------------------------------------------|-----------|
|         | Relative atomic masses ( $A_r$ ): N = 14 O = 16 Pb = 207                                        |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
|         | Relative formula mass =                                                                         |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
| 0 2 . 5 | The formula of potassium chromate is $K_2CrO_4$                                                 |           |
|         | The charge on the potassium ion is +1                                                           |           |
|         | What is the formula of the chromate ion?                                                        | [1 mark]  |
|         | Tick <b>one</b> box.                                                                            |           |
|         | CrO <sub>4</sub> <sup>+</sup>                                                                   |           |
|         | CrO <sub>4</sub> <sup>2+</sup>                                                                  |           |
|         | CrO <sub>4</sub> <sup>-</sup>                                                                   |           |
|         | CrO <sub>4</sub> <sup>2-</sup>                                                                  |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |
|         |                                                                                                 |           |

| 02.6 | Another student also tests the law of conservation of mass using the same method.                                   |
|------|---------------------------------------------------------------------------------------------------------------------|
|      | The student uses a different reaction.                                                                              |
|      | This is the equation for the reaction.                                                                              |
|      | $Na_2CO_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + CO_2(g) + H_2O(I)$                                                 |
|      | Explain why this student's results would <b>not</b> appear to support the law of conservation of mass.<br>[3 marks] |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      | Turn over for the next question                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |
|      |                                                                                                                     |

| 0 3   | A student makes a hypothesis:                                                                                                   |  |  |  |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|       | When different salt solutions are electrolysed with inert electrodes, the product at the negative electrode is always a metal'. |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| 0 3 1 | Describe how you would test this hypothesis in the laboratory.                                                                  |  |  |  |  |  |  |  |  |  |
|       | You should:                                                                                                                     |  |  |  |  |  |  |  |  |  |
|       | draw a labelled diagram of the apparatus                                                                                        |  |  |  |  |  |  |  |  |  |
|       | give the independent variable                                                                                                   |  |  |  |  |  |  |  |  |  |
|       | <ul> <li>describe what you would see at the negative electrode if the hypothesis is true.</li> <li>[5 marks]</li> </ul>         |  |  |  |  |  |  |  |  |  |
|       | Diagram                                                                                                                         |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       | Independent variable                                                                                                            |  |  |  |  |  |  |  |  |  |
|       | Observation                                                                                                                     |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |
|       |                                                                                                                                 |  |  |  |  |  |  |  |  |  |

| 0 3.2 | The student's hypothesis is only partially correct.                             |           |    |
|-------|---------------------------------------------------------------------------------|-----------|----|
|       | Explain why the product at the negative electrode is <b>not</b> always a metal. | [2 marks] |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
| 03.3  | Predict the product at the <b>positive</b> electrode in the electrolysis of:    |           |    |
|       | sodium chloride solution                                                        |           |    |
|       | copper sulfate solution.                                                        | [2 marks] |    |
|       | Sodium chloride solution                                                        |           |    |
|       | Copper sulfate solution                                                         |           |    |
|       |                                                                                 |           | -  |
|       |                                                                                 |           | ΙL |
|       | Turn over for the next question                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |
|       |                                                                                 |           |    |



| 04.4 | An element has three isotopes.                                 |                       |                           |           |      |  |  |  |  |  |  |
|------|----------------------------------------------------------------|-----------------------|---------------------------|-----------|------|--|--|--|--|--|--|
|      | Table 2 shows the mass numbers and percentage of each isotope. |                       |                           |           |      |  |  |  |  |  |  |
|      | Table 2                                                        |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       | Isotope 1 Isotope 2 Isoto |           |      |  |  |  |  |  |  |
|      |                                                                | Mass number           | 24                        | 25        | 26   |  |  |  |  |  |  |
|      |                                                                | Percentage (%)        | 78.6                      | 10.1      | 11.3 |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      | Calculate the                                                  | e relative atomic mas | ss $(A_r)$ of the e       | element.  |      |  |  |  |  |  |  |
|      | Give your an                                                   | swer to 3 significant | figures.                  |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       | Relative atom             | ic mass – |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                | Turn over for         | the next que              | estion    |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |
|      |                                                                |                       |                           |           |      |  |  |  |  |  |  |

Turn over ►

[2 marks]



| 0 5.2 | The students controlled the volu                                | me of the h | nydrochlori   | c acid.       |                   |                |
|-------|-----------------------------------------------------------------|-------------|---------------|---------------|-------------------|----------------|
|       | Give <b>one</b> other control variable the students should use. |             |               |               |                   |                |
|       |                                                                 |             |               |               |                   | [· · · · · · ] |
|       |                                                                 |             |               |               |                   |                |
|       |                                                                 |             |               |               |                   |                |
|       |                                                                 |             |               |               |                   |                |
|       | Table 3 shows one student's res                                 | sults.      |               |               |                   |                |
|       |                                                                 | Table 3     |               |               |                   |                |
|       |                                                                 |             | <b>T</b> : 10 | <b>T</b> : 10 |                   |                |
|       | Initial termoreture in °C                                       | Trial 1     | Trial 2       | Trial 3       | Trial 4           |                |
|       | Final temperature in °C                                         | 21.2        | 21.1          | 21.0          | 21.1              |                |
|       | Tomporature decrease in °C                                      | 5.6         | 5.7           | 5.0           | 10.0              |                |
|       |                                                                 | 5.0         | 5.7           | 5.4           | 4.5               |                |
|       |                                                                 |             |               |               |                   |                |
| 0 5.3 | Calculate the mean temperature                                  | decrease    | for the res   | ults shown    | in <b>Table 3</b> | 5.             |
|       | Ignore any anomalous results.                                   |             |               |               |                   |                |
|       | Give your answer to 1 decimal p                                 | lace.       |               |               |                   |                |
|       | Give the uncertainty in your answ                               | wer.        |               |               |                   | [3 marks]      |
|       |                                                                 |             |               |               |                   | [0             |
|       |                                                                 |             |               |               |                   |                |
|       |                                                                 |             |               |               |                   |                |
|       |                                                                 | Mean        | =             | °C            | ) ±               | 0°             |
|       |                                                                 |             |               |               |                   |                |
|       | Question 5 cont                                                 | inues on t  | he next pa    | age           |                   |                |

Turn over ►



| 0 5.5 | Explain why the graph has this shape.      |        |    |
|-------|--------------------------------------------|--------|----|
|       | Use data from the graph. [3 r              | narks] |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
| 0 5.0 | Do <b>not</b> include errors in measuring. |        |    |
|       | [1                                         | mark]  |    |
|       |                                            |        |    |
|       |                                            |        | 12 |
|       | Turn over for the next question            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |
|       |                                            |        |    |





|      | Graphite and fullerenes are forms of carbon.             |
|------|----------------------------------------------------------|
| 06.3 | Graphite is soft and is a good conductor of electricity. |
|      | Explain why graphite has these properties.               |
|      | Answer in terms of structure and bonding.                |
|      | [4 marks]                                                |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |
|      |                                                          |







Silver nanoparticles are sometimes used in socks to prevent foot odour.

Suggest why it is cheaper to use nanoparticles of silver rather than coarse particles of silver.

[2 marks]

Turn over for the next question

Turn over ►

| 0 7   | A scientist produces zinc iodide (ZnI <sub>2</sub> ).                 |           |
|-------|-----------------------------------------------------------------------|-----------|
|       | This is the method used.                                              |           |
|       | 1. Weigh 0.500 g of iodine.                                           |           |
|       | 2. Dissolve the iodine in ethanol.                                    |           |
|       | 3. Add an excess of zinc.                                             |           |
|       | 4. Stir the mixture until there is no further change.                 |           |
|       | 5. Filter off the excess zinc.                                        |           |
|       | 6. Evaporate off the ethanol.                                         |           |
|       |                                                                       |           |
|       |                                                                       |           |
| 0 7.1 | Ethanol is flammable.                                                 |           |
|       | Suggest how the scientist could carry out Step 6 safely.              |           |
|       |                                                                       | [1 mark]  |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
| 0 7.2 | Explain why the scientist adds excess zinc rather than excess iodine. | [3 marks] |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       | ,         |
|       |                                                                       |           |
|       |                                                                       |           |
|       |                                                                       |           |



|       | A different scientist makes zinc iodide by the same method.                                         |
|-------|-----------------------------------------------------------------------------------------------------|
|       | The scientist obtains 12.5 g of zinc iodide.                                                        |
|       | The percentage yield in this reaction is 92.0%.                                                     |
| 0 7.4 | What is the maximum theoretical mass of zinc iodide produced in this reaction?<br>[3 marks]         |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       | Maximum theoretical mass = g                                                                        |
|       |                                                                                                     |
| 0 7.5 | Suggest <b>one</b> reason why the percentage yield in this reaction is <b>not</b> 100%.<br>[1 mark] |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |
|       |                                                                                                     |

| 0 7.6 | The scientist makes a solution of zinc iodide with a concentration of 0.100 mol/dm                 | 3     |
|-------|----------------------------------------------------------------------------------------------------|-------|
|       | Calculate the mass of zinc iodide $(ZnI_2)$ required to make 250 cm <sup>3</sup> of this solution. |       |
|       | Relative atomic masses ( $A_r$ ): $Zn = 65$ I = 127 [3 mag                                         | arks] |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       | Mass =                                                                                             | g     |
|       |                                                                                                    |       |
|       | Turn over for the next question                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       |                                                                                                    |       |
|       | Turn ov                                                                                            | /er ► |

| 0 8   | Cells contain chemicals which react to produce electricity.                                                      |
|-------|------------------------------------------------------------------------------------------------------------------|
| 08.1  | Why can a rechargeable cell be recharged? [1 mark]                                                               |
|       |                                                                                                                  |
| 08.2  | Give <b>two</b> factors that affect the voltage produced by a cell. [2 marks]                                    |
|       | 2                                                                                                                |
| 0 8.3 | Balance the half-equation for the reaction occurring at an electrode in one type of hydrogen fuel cell. [1 mark] |
|       | $H_2$ + $OH^- \rightarrow H_2O$ + $e^-$                                                                          |
| 08.4  | Why is the fuel cell in Question <b>08.3</b> described as an alkaline fuel cell? [1 mark]                        |
|       |                                                                                                                  |
|       |                                                                                                                  |
|       |                                                                                                                  |





| 09   | Citric acid is a weak acid.           |           |
|------|---------------------------------------|-----------|
| 09.1 | Explain what is meant by a weak acid. | [2 marks] |
|      |                                       |           |
|      |                                       |           |
|      | Question 9 continues on the next page |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |
|      |                                       |           |

|      | A student titrated citric acid with sodium hydroxide solution.                                                                    |
|------|-----------------------------------------------------------------------------------------------------------------------------------|
|      | This is the method used.                                                                                                          |
|      | 1. Pipette 25.0 cm <sup>3</sup> of sodium hydroxide solution into a conical flask.                                                |
|      | 2. Add a few drops of thymol blue indicator to the sodium hydroxide solution.                                                     |
|      | Thymol blue is blue in alkali and yellow in acid.                                                                                 |
|      | 3. Add citric acid solution from a burette until the end-point was reached.                                                       |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
| 09.2 | Explain what would happen at the end-point of this titration.                                                                     |
|      | Refer to the acid, the alkali and the indicator in your answer.                                                                   |
|      | [3 marks]                                                                                                                         |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
| 09.3 | Explain why a pipette is used to measure the sodium hydroxide solution but a burette is used to measure the citric acid solution. |
|      | [2 marks]                                                                                                                         |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |
|      |                                                                                                                                   |

**0 9 4 Table 5** shows the student's results.

| Та | ab | le | 5 |
|----|----|----|---|
|    | ~~ | •• | • |

| 13.50<br>or the reaction                                                 | 12.10                                                                                     | 11.10                                                                                                                                                       | 12.15                                                                                                                                                                                                                                     | 12.15                                                                                                                                                                                                                                                    |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| or the reaction                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
| or the reaction                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          | is:                                                                                       |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
| C <sub>6</sub> H <sub>8</sub> O <sub>7</sub> +                           | - 3NaOH →                                                                                 | $C_6H_5O_7Na_3$                                                                                                                                             | + 3H <sub>2</sub> O                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                          |  |  |
| tion of the sodi                                                         | um hydroxide                                                                              | was 0.102 mo                                                                                                                                                | l/dm <sup>3</sup>                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                          |  |  |
| Concordant results are those within 0.10 cm <sup>3</sup> of each other.  |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
| Calculate the concentration of the citric acid in mol/dm <sup>3</sup>    |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
| Use only the concordant results from <b>Table 5</b> in your calculation. |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
| You must show your working.                                              |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           | [o mai                                                                                                                                                                                                                                                   |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          |                                                                                           |                                                                                                                                                             |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          | Concentra                                                                                 | ation =                                                                                                                                                     |                                                                                                                                                                                                                                           | mol/dr                                                                                                                                                                                                                                                   |  |  |
| END                                                                      |                                                                                           | ONS                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                          |  |  |
|                                                                          | tion of the sodi<br>sults are those<br>oncentration o<br>oncordant resu<br>v your working | tion of the sodium hydroxide<br>sults are those within 0.10 cm<br>oncentration of the citric acid<br>oncordant results from <b>Table</b><br>v your working. | tion of the sodium hydroxide was 0.102 mo<br>sults are those within 0.10 cm <sup>3</sup> of each othe<br>concentration of the citric acid in mol/dm <sup>3</sup><br>oncordant results from <b>Table 5</b> in your calc<br>v your working. | tion of the sodium hydroxide was 0.102 mol/dm <sup>3</sup> sults are those within 0.10 cm <sup>3</sup> of each other. concentration of the citric acid in mol/dm <sup>3</sup> oncordant results from <b>Table 5</b> in your calculation. v your working. |  |  |



Copyright © 2017 AQA and its licensors. All rights reserved.