AQA

Please write clearly in block capitals.

Centre number | | | | | |
| :--- | :--- | :--- | :--- | :--- |

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad

GCSE PHYSICS

Foundation Tier

Specimen 2018 (set 2)

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100 .
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Time allowed: 1 hour 45 minutes

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
TOTAL	

$\mathbf{0}$	$\mathbf{1}$	A student investigated how the pressure of a gas varied with the volume of the gas.

The mass and temperature of the gas were constant.
Figure 1 shows the equipment the student used.

Figure 1

0	1	1

Tick one box.

0 to $1 \mathrm{~cm}^{3}$ \square
0 to $5 \mathrm{~cm}^{3}$

0 to $20 \mathrm{~cm}^{3}$

0 to $25 \mathrm{~cm}^{3}$

| 0 | 1 | 2 |
| :--- | :--- | :--- | What type of variable was the mass of gas?

Tick one box.

Control

Dependent
\square

Independent \square

Question 1 continues ion the next page

The student compressed the gas in the syringe and read the pressure from the pressure gauge.

Figure 2 shows the student's results.

Figure 2

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ | The student concluded that when the pressure was multiplied by the corresponding |
| :--- | :--- | :--- | :--- | volume the answer was the same.

Use data from Figure 2 to show that the student's conclusion was correct.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	1	4

Choose the answers from the box.
Each answer may be used once, more than once or not at all.

decreases increases remains the same

When the gas is compressed, the volume of gas in the syringe \qquad .

So the number of collisions each second between the gas particles inside the syringe and the inside surface of the syringe \qquad .

This means the force exerted on the inside surface of the container walls \qquad .

Turn over for the next question

| 0 | 2 |
| :--- | :--- | Figure 3 shows the circuit used to obtain the data needed to plot the current-potential difference graph for a filament lamp.

Figure 3

$\mathbf{0}$	$\mathbf{2} .1$
$\mathbf{1}$	Why is component \mathbf{M} included in the circuit?

Tick one box.

To keep the current constant.

To keep the potential difference constant.

To vary the current.

| 0 | 2 | 2 |
| :--- | :--- | :--- | Why does the resistance of the lamp increase as the potential difference across the lamp increases?

\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{3}$ The potential difference across the lamp is 12.0 V

Calculate the energy transferred by the lamp when 8.5 C of charge flows through the lamp.

Use the equation:

$$
\text { energy transferred }=\text { charge flow } \times \text { potential difference }
$$

\qquad
\qquad
\qquad
Energy transferred = \qquad J

$\mathbf{0}$	$\mathbf{2}$.4
$\mathbf{4}$	Table 1 gives data about two types of lamp that householders may use in	

Table 1

Type of lamp	Energy efficiency	Mean lifetime in hours
Halogen	10%	2000
LED	90%	36000

Both types of lamp produce the same amount of light.
Describe the environmental advantages of using the LED lamp compared with the halogen lamp.
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{3}$ A student investigated the properties of three insulating materials.

Figure 4 shows the apparatus the student used.
Figure 4

In the investigation, different insulating materials were used to insulate a metal can filled with hot water.

Figure 5 shows how the temperature measured by the thermometer changed over 25 minutes for each of the materials.

Figure 5

| $\mathbf{0}$ | $\mathbf{3} .1$ | $\mathbf{1}$ What was the temperature of the room where the student carried out |
| :--- | :--- | :--- | the investigation?

Tick one box.

$80^{\circ} \mathrm{C} \square$

How does the graph in Figure 5 show this?
\qquad
\qquad

Question 3 continues on the next page

0	3	3
Another student repeated the investigation using the equipment shown in Figure 6.		

Figure 4

Suggest how using the equipment in Figure 6 will have affected the student's results. [2 marks]
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{3} .4$ The students could have used a temperature probe and datalogger instead of |
| :--- | :--- | :--- | a thermometer.

Figure 7 shows the datalogger screen and the thermometer.

Figure 7

Datalogger screen

Magnified view

Complete the sentences.
Choose the answers from the box.
higher lower the same

Compared to the thermometer, the datalogger and temperature probe have a resolution that is \qquad .

Compared to the thermometer, the chance of misreading the datalogger and temperature probe is \qquad .

Question 3 continues on the next page

| $\mathbf{0}$ | $\mathbf{3}$. | $\mathbf{5}$ Table $\mathbf{2}$ gives information about four types of insulation that could be used in the |
| :--- | :--- | :--- | :--- | walls of houses.

Table 2

Type of insulation	Thermal conductivity in $\mathbf{W} / \mathbf{m}{ }^{\circ} \mathrm{C}$
Felt wool	0.070
Mineral wool	0.040
Polyurethane foam	0.030
Rock wool	0.045

Which type of insulation would be most effective in reducing the rate of cooling of a building?

Tick one box.

Felt wool

Mineral wool

Polyurethane foam

Rock wool

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad

0	4	A student used some everyday items to investigate static electricity.

Figure 8 shows a flexible plastic strip being rubbed with a cloth.

Figure 8

| 0 | 4 | 1 | Complete the sentence. |
| :--- | :--- | :--- | :--- | :--- |

Choose the answer from the box.

Rubbing the plastic strip with the cloth causes the strip to become negatively charged because \qquad move from the cloth onto the plastic strip.

$\mathbf{0}$	$\mathbf{4}$	$\mathbf{2}$ Complete the sentence.

Choose the answer from the box.

a negative \quad a positive \quad zero

The cloth is left with \qquad charge.

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{3}$ The student hung the plastic strip over a wooden rod. |
| :--- | :--- | :--- | :--- |

The ends of the strip moved away from each other.
Figure 9 shows the position of the plastic strip on the wooden rod.

Figure 9

What two conclusions should the student make about the forces acting on the two halves of the plastic strip?

1 \qquad
\qquad
2 \qquad
\qquad

| 0 | $\mathbf{4}$ | .4 Another student repeated the experiment using the same method and found the |
| :--- | :--- | :--- | plastic strip moved in the same way

Complete the sentence.
Choose the answer from the box.
an anomaly repeatable reproducible

The investigation was \qquad .

| 0 | 5 |
| :--- | :--- |\quad Figure 10 shows a lithium atom.

Figure 10

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ What is the mass number of this lithium atom?

Tick one box.
3

4

7

10

$\mathbf{0}$	$\mathbf{5}$	$\mathbf{2}$ What is the atomic number of a lithium atom?

Tick one box.
3

4 \square
7 \square

10 \square

Give a reason for your answer.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{5}$ | $\mathbf{3}$ Complete the sentence. |
| :--- | :--- | :--- | :--- |

Choose the answer from the box.

circles	levels	rings

The electrons in an atom orbit in different energy \qquad .

0	5	4
Some atomic nuclei are unstable and decay by emitting an alpha particle or		

Complete the symbols for an alpha particle and a beta particle.
Use answers from the box.

0	5	5
5	Doctors may use nuclear radiation to diagnose certain types of illness.	

Table 3 gives data about three radiation sources used.
Each source emits beta radiation.

Table 3

Radiation source	Half-life in minutes
Carbon-11	20
Nitrogen-13	10
Oxygen-15	2

Explain why oxygen-15 is likely to pose the least risk to a patient.
\qquad
\qquad
\qquad
\qquad

0	6	Solar cells produce electricity using light from the Sun.

The symbol for a solar cell is:

A householder has three solar cells.
Each solar cell has an output potential difference of 0.70 V

| $\mathbf{0}$ | $\mathbf{6} .1$ Which arrangement of three solar cells will give a potential difference of 2.10 V ? |
| :--- | :--- | :--- |

Tick one box.

| $\mathbf{0}$ | $\mathbf{6} .2 \mathrm{~A}$ solar cell has a resistance of 2.5Ω when the output potential difference is $0.70 \mathrm{~V}, ~$ |
| :--- | :--- | :--- | Calculate the current through the solar cell.

Use the equation:

$$
\text { current }=\frac{\text { potential difference }}{\text { resistance }}
$$

\qquad
\qquad
\qquad
\qquad
Current $=$

Figure 11 shows a graph of current against potential difference for a different type of solar cell.

Figure 11

0	6	3

$$
\text { power }=\text { current } \times \text { potential difference }
$$

Which value of potential difference on Figure 11 gives the maximum power output of the solar cell?

Tick one box.
0.1 V \square
0.3 V \square
0.6 V

0.7 V \square

Give the reason for your answer.
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6} .4$ | $\mathbf{4}$ Write down the equation that links efficiency, total power input and |
| :--- | :--- | :--- | useful power output.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{6}$ | $\mathbf{5}$ The total power input to the solar cell is 2.4 W when the efficiency is 0.20 |
| :--- | :--- | :--- | Calculate the useful power output of the solar cell.

\qquad
\qquad
\qquad
\qquad
Useful power output = \qquad W

0	7	Figure 12 shows a battery-powered drone.

Figure 12

0	$\mathbf{7}$	1

Choose the answers from the box.

chemical		elastic potential
gravitational potential	kinetic	nuclear

As the drone accelerates upwards
its \qquad energy increases
and its \qquad energy increases.

The \qquad energy store
of the battery decreases.

0	$\mathbf{7} .2$	In the USA, drones are not allowed to be flown too high above the ground.

Suggest one possible risk of flying a drone too high above the ground.
\qquad
\qquad
\qquad
$\begin{array}{lll}\mathbf{0} & \mathbf{7} . & \mathbf{3} \text { Write down the equation that links energy transferred, power and time. }\end{array}$

$\mathbf{0}$	$\mathbf{7}$	$\mathbf{4}$	The drone can fly for 25 minutes before the battery needs recharging.

The power output of the battery is 65.0 W
Calculate the maximum energy stored by the battery.
\qquad
\qquad
\qquad
\qquad
Maximum energy = \qquad joules

0	8

| 0 | 8 | 1 |
| :--- | :--- | :--- | Which two of the sources listed in the table are natural sources of background radiation?

Tick two boxes.

Cosmic rays \square
Medical X-rays

Nuclear power stations

Nuclear weapons testing

Radon gas

A teacher used a Geiger-Müller (GM) tube and counter to measure the background radiation in his laboratory.

Figure 13 shows the GM tube and counter.

Figure 13

| $\mathbf{0}$ | $\mathbf{8} .2$ | $\mathbf{2}$ Table $\mathbf{4}$ gives three readings taken by the teacher at three different times on the |
| :--- | :--- | :--- | same day.

Table 4

Counts in $\mathbf{1}$ minute
16
21
18

What is the most likely reason for the readings being different?
Tick one box.

Radioactive decay is a random process.

The air pressure in the laboratory increased.

The background radiation increased during the day.

The temperature in the laboratory decreased.

Question 8 continues on the next page

$\mathbf{0}$	$\mathbf{8}$.	$\mathbf{3}$ The teacher takes a radioactive source from a storage box.

Figure 14 shows the box.

Figure 14

Why does storing the radioactive source in the box reduce the risk of radiation exposure to the teacher?

Tick one box.

The lead lining absorbs the emitted radiation.

The lead lining reflects the emitted radiation.
\square

The lead lining transmits the emitted radiation.

0	8	4
4	Figure 15 shows how the teacher used the GM tube and counter to measure the	

The counter was reset to zero.
The count after one minute was 159 .

Figure 15

How should the teacher calculate the counts from the radioactive source?

Tick one box.

Add the background count to 159 \square

Divide the background count by 159

Multiply the background count by 159

Subtract the background count from 159

Question 8 continues on the next page

0	8	5	The teacher passed the radiation through an electric field.

Figure 16 shows the path that the radiation took through the electric field.

Figure 16

What type of radiation was being emitted by the radioactive source?
Tick one box.
Alpha

\square

Neutron

Explain the reason for your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{9}$ Most electric kettles use the ac mains electricity supply.

0	9	1

The ac mains supply has a potential difference that continuously
\qquad polarity,

Figure 17 gives the power output of three electric kettles.

Figure 17
A

2500 W
B

1800 W
C

2.8 kW

A student investigated how the power output of a kettle affected the time taken to boil a fixed volume of water.

The water in all three kettles had an initial temperature of $25^{\circ} \mathrm{C}$.

0	9	2

Tick one box.

Control

Dependent

Independent

$\mathbf{0}$	$\mathbf{9}$	$\mathbf{3}$ Which kettle will boil the water in the shortest time?

Give a reason for your answer.

Kettle
Reason \qquad
\qquad
\qquad

Question 9 continues on the next page

0	9	4
4	Figure 18 shows how the amount of energy transferred by a kettle varies with time.	

Figure 18

The power output of the kettle is given by the gradient of the graph. Calculate the power output of the kettle.
\qquad
\qquad
Power output = \qquad W

| $\mathbf{0}$ | $\mathbf{9}$ | $\mathbf{5}$ Write down the equation that links charge flow, current and time. ${ }^{2}$. |
| :--- | :--- | :--- | :--- |

\qquad

| 0 | 9 | 6 |
| :--- | :--- | :--- | 250 seconds.

\qquad
\qquad
\qquad
\qquad
Current = \qquad A

Turn over for the next question

| 1 | 0 |
| :--- | :--- | Figure 19 shows a tennis ball thrown vertically into the air.

Figure 19

At position \mathbf{C}, the ball has just left the tennis player's hand at a speed of $5.0 \mathrm{~m} / \mathrm{s}$ The tennis ball has a mass of 0.058 kg
$\begin{array}{lll}1 & 0 & 1\end{array}$ Write down the equation that links kinetic energy, mass and speed.
\qquad

\qquad
\qquad
Kinetic energy = \qquad J
$\begin{array}{llll}\mathbf{1} & \mathbf{0} & \mathbf{3} & \text { At position } \mathbf{A} \text { the tennis ball is at maximum height. }\end{array}$
What is the gravitational potential energy of the tennis ball at position \mathbf{A} ? Ignore the effect of air resistance.

At position \mathbf{B} the tennis ball has 0.38 J of gravitational potential energy.

| $\mathbf{1}$ | $\mathbf{0}$ | .4 |
| :--- | :--- | :--- | Write down the equation that links gravitational field strength, gravitational potential energy, height and mass.

\qquad
$\begin{array}{lll}1 & 0 & 5 \\ 5\end{array}$ Calculate the height of the tennis ball above the tennis player's hand when at position B.
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
Height $=$ \qquad m

| 1 | 1 | The wind turbines in a wind farm must have a minimum distance of 500 m between |
| :--- | :--- | :--- | them for maximum efficiency.

Figure $\mathbf{2 0}$ shows the position of nine wind turbines in a wind farm.

Figure 20

$\begin{array}{llll}1 & 1 & 1 & \text { Suggest one way in which the layout of this wind farm ensures maximum efficiency }\end{array}$ when the wind direction changes.
\qquad
\qquad
\qquad

The average mass of air passing through the blades of one wind turbine is 51000 kg per second.

The density of air is $1.2 \mathrm{~kg} / \mathrm{m}^{3}$
$\begin{array}{llll}1 & 1 & 2 & \text { Write down the equation that links density, mass and volume. }\end{array}$
$\begin{array}{lll}\mathbf{1} & \mathbf{1} & \mathbf{3} \text { Calculate the volume of air passing through the blades of one wind turbine }\end{array}$ per second.

Give the unit.
Give your answer to 2 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Volume per second = \qquad Unit

$\mathbf{1}$	$\mathbf{1}$.4
$\mathbf{4}$	The average power output from one of the wind turbines in Figure 20 is $1.6 \times 10^{6} \mathrm{~W}$	

Calculate the number of wind turbines needed to generate power equal to one nuclear power station.
\qquad
\qquad
\qquad
Number of wind turbines $=$
$\begin{array}{lll}1 & 1 & 5 \\ \mathbf{5}\end{array}$ The UK requires a minimum electrical power of $2.5 \times 10^{10} \mathrm{~W}$ at any time.
Give two reasons why wind turbines alone are unlikely to be used to meet this requirement.

1 \qquad
\qquad
2 \qquad

| 1 | 2 |
| :--- | :--- | The specific heat capacity of aluminium can be determined by experiment.

| 1 | 2 | 1 |
| :--- | :--- | :--- | heat capacity of aluminium should be arranged.

12 . 2 Describe how you could use the apparatus you drew in Question 12.1 to determine the specific heat capacity of aluminium.
\qquad

Question 12 continue on the next page

| $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ Methods used to determine the specific heat capacity of aluminium may give a value |
| :--- | :--- | :--- | greater than the actual value.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

END OF QUESTIONS

Copyright Information

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Acknowledgement of copyright holders and publishers
Figure 12 © koya79/iStock.com
Copyright © 2017 AQA and its licensors. All rights reserved.

