Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

GCSE PHYSICS

Foundation Tier

Paper 1F

Specimen 2018 (set 2)

Time allowed: 1 hour 45 minutes

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet (enclosed).

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 100.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
TOTAL		

0 1.4	Complete th	ne sentences.			
	Choose the	answers from the b	OOX.		
	Each answe	er may be used onc	e, more than one	ce or not at all.	[3 marks]
		decreases	increases	remains the same	
	When the ga	as is compressed, t	he volume of ga	s in the syringe	
	So the num	ber of collisions eac	ch second betwe	en the gas particles insid	e the syringe
	and the insid	de surface of the sy	ringe		
				ace of the container	
	walls				
		Turn over f	or the next que	stion	

The po	otential difference a	across the lamp is 12.0	V	
Calculate the energy transferred by the lamp when 8.5 C of charge flows through the lamp.				
Use the equation:				
energy transferred = charge flow × potential difference [2 marks]				
		Enoray transfo	rrod –	
		Energy transie	ared –	J
Table 1 gives data about two types of lamp that householders may use in their homes.				
		Table 1		
	Type of lamp	Energy efficiency	Mean lifetime in hours	
	Halogen	10%	2 000	
	LED	90%	36 000	
Descri	ibe the environmen			d with the [2 marks]
	Calcul the lar Use th Table their h Both t	Calculate the energy transite lamp. Use the equation: energy transite energy t	Calculate the energy transferred by the lamp withe lamp. Use the equation: energy transferred = charge flor Energy transferred = charge flor Energy transferred = charge flor Energy transferred Energy transferred Energy transferred Energy efficiency Halogen 10% LED 90% Both types of lamp produce the same amount of Describe the environmental advantages of usin	the lamp. Use the equation: energy transferred = charge flow × potential difference Energy transferred = Table 1 gives data about two types of lamp that householders may use in their homes. Table 1 Table 1 Mean lifetime in hours Halogen 10% 2 000 LED 90% 36 000 Both types of lamp produce the same amount of light. Describe the environmental advantages of using the LED lamp compare-

4 The students could have used a temperature probe and datalogger instead of a thermometer.

Figure 7 shows the datalogger screen and the thermometer.

Complete the sentences.

Choose the answers from the box.

[2 marks]

higher lower the same

Compared to the thermometer, the datalogger and temperature probe have

a resolution that is _____.

Compared to the thermometer, the chance of misreading the datalogger and

temperature probe is .

Question 3 continues on the next page

0 3.5

Table 2 gives information about four types of insulation that could be used in the walls of houses.

Type of insulation	Thermal conductivity in W/m °C
Felt wool	0.070
Mineral wool	0.040
Polyurethane foam	0.030
Rock wool	0.045

Which type of insulation would be most effective in reducing the rate of cooling of a building? [2 marks]

Tick one box.	
Felt wool	
Mineral wool	
Polyurethane foam	
Rock wool	

Give a reason for your answer.

8

Table 2

04.3	The student hung the plastic strip over a wooden rod.
	The ends of the strip moved away from each other.
	Figure 9 shows the position of the plastic strip on the wooden rod.
	Figure 9
	Wooden rod Plastic strip
	What two conclusions should the student make about the forces acting on the two halves of the plastic strip? [2 marks]
	1
	2

[1 mark]

0 4 . 4

• Another student repeated the experiment using the same method and found the plastic strip moved in the same way.

Complete the sentence.

Choose the answer from the box.

The investigation was ______.

Turn over for the next question

Turn over ►

SPECIMEN MATERIAL

0 5.3	Complete the	sentence.				
	Choose the a	nswer from th	ne box.			[1 mark]
		circles		levels	rings]
					_	
	The electrons	in an atom o	rbit in differen	t energy		
0 5.4	Some atomic a beta particle		stable and de	cay by emitting	an alpha particle	or
	Complete the	symbols for a	an alpha parti	cle and a beta p	article.	
	Use answers	from the box.				[3 marks]
		-1	0	1	2	4
	Alpha Beta	H B B C B	e			
		Question 5	continues o	n the next page	•	

Do not write outside the

box

0 5 . 5 Doctors may use nuclear radiation to diagnose certain types of illness.

Table 3 gives data about three radiation sources used.

Each source emits beta radiation.

Table 3

Radiation source	Half-life in minutes
Carbon-11	20
Nitrogen-13	10
Oxygen-15	2

Explain why oxygen-15 is likely to pose the least risk to a patient.

[2 marks]

Turn over ►

0 6.3	The power output of the solar cell is calculated using the equation.	
	power = current × potential difference	
	Which value of potential difference on Figure 11 gives the maximum power output of the solar cell? [2 marks] Tick one box. 0.1 V 0.3 V 0.6 V 0.7 V Give the reason for your answer.	I
		_
06.4	Write down the equation that links efficiency, total power input and useful power output. [1 mark]	-
06.5	The total power input to the solar cell is 2.4 W when the efficiency is 0.20	
	Calculate the useful power output of the solar cell. [3 marks]	-
		-
	Useful power output = W	

07.2	In the USA, drones are not allowed to be flown too high above the ground. Suggest one possible risk of flying a drone too high above the ground.	[1 mark]
07.3	Write down the equation that links energy transferred, power and time.	[1 mark]
07.4	The drone can fly for 25 minutes before the battery needs recharging. The power output of the battery is 65.0 W Calculate the maximum energy stored by the battery.	[3 marks]
	Maximum energy =	joules
	Turn over for the next question	

Turn over ►

Geiger-Müller (GM) tube

Turn over ►

Turn over ►

A student investigated how the power output of a kettle affected the time taken to boil a fixed volume of water.

The water in all three kettles had an initial temperature of 25 °C.

09.2	What type of variable was the time?	1 mark]
	Tick one box.	ппаткј
	Control Dependent	
	Independent	
09.3	Which kettle will boil the water in the shortest time?	
	Give a reason for your answer.	marks]
	Kettle	-
	Reason	
	Question 9 continues on the next page	

09.5	Write down the equation that links charge flow, current and time. [1 mark]	
09.6	Calculate the current through the kettle when 2400 coulombs of charge flows in 250 seconds. [3 marks]	
	Current = A	-
	Turn over for the next question	

10.2	Calculate the kinetic energy of the tennis ball at position C .	[2 marks]
	Kinetic energy =	J
10.3	At position A the tennis ball is at maximum height.	
	What is the gravitational potential energy of the tennis ball at position A?	
	Ignore the effect of air resistance.	[1 mark]
	At position B the tennis ball has 0.38 J of gravitational potential energy.	
10.4	Write down the equation that links gravitational field strength, gravitational penergy, height and mass.	
		[1 mark]
10.5	Calculate the height of the tennis ball above the tennis player's hand when at position B .	
	gravitational field strength = 9.8 N/kg	[3 marks]
	Height =	m

	The average mass of air passing through the blades of one wind turbine is 51 000 kg per second.	
	The density of air is 1.2 kg / m ³	
11.2	Write down the equation that links density, mass and volume.	[1 mark]
1 1.3	Calculate the volume of air passing through the blades of one wind turbine per second.	
	Give the unit.	
	Give your answer to 2 significant figures.	[5 marks]
	Volume per second = Unit	
	Question 11 continues on the next page	

1 1.4	The average power output from one of the wind turbines in Figure 20 is 1.6×10^6 W
	The average power output of a nuclear power station is 2.4×10^9 W
	Calculate the number of wind turbines needed to generate power equal to one nuclear power station. [2 marks]
	Number of wind turbines =
1 1.5	The UK requires a minimum electrical power of 2.5×10^{10} W at any time.
	Give two reasons why wind turbines alone are unlikely to be used to meet this requirement.
	[2 marks]
	2

1 2	The specific heat capacity of aluminium can be determined by experiment.	
12.1	Draw a labelled diagram showing how the apparatus used to determine the specific heat capacity of aluminium should be arranged.	
	[3 marks	\$]

12.2	escribe how you could use the apparatus you drew in Question 12.1 to determine e specific heat capacity of aluminium.		
		[6 marks]	
	Question 12 continue on the next page		

1 2 . 3 Methods used to determine the specific heat capacity of aluminium may give a value greater than the actual value. Explain why. [2 marks] END OF QUESTIONS **Copyright Information** Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ. Acknowledgement of copyright holders and publishers Figure 12 © koya79/iStock.com Copyright © 2017 AQA and its licensors. All rights reserved.