

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

GCSE SCIENCE CHEMISTRY

Foundation Tier

End of Year 10 test 2018

Materials

For this paper you must have:

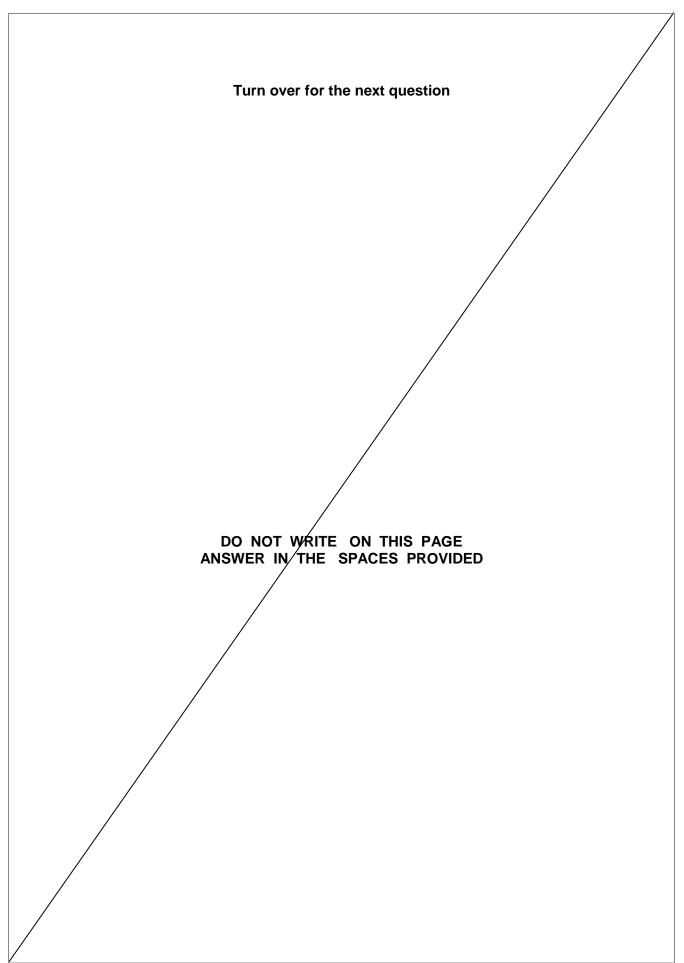
- a ruler
- a scientific calculator
- the periodic table.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

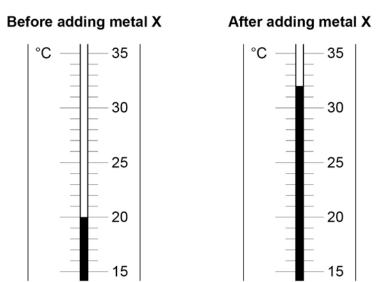

For Exam	iner's Use
Question	Mark
1	
2	
3	
4	
5	
6	
7	
8	
TOTAL	

Time allowed: 1 hour

0 1 . 1	Figure 1 shows the	ne atom of an ele	ement.		
		Fig	jure 1		
	*	***	Neutron		
0 1 . 1	Label Figure 1 .				
	Choose the answ	er from the box.			[1 mark]
	Electron	lon	Molecule	Proton	
0 1 . 2	What is the relative Tick one box. +1 0 -1	ve charge of a ne	eutron?		[1 mark]

0	1	. 3	Complete the ser	ntence.		
			Choose the answ	ver from the box.		
						[1 mark]
		comp	ounds	isotopes	mixtures	polymers
			Atoms of an elem	nent with differen	t numbers of neutrons	
			are called		·	
0	1	. 4	What is the mass	s number of the a	atom in Figure 1 ?	
			Tick one box.			[1 mark]
			9			
			10			
			19			
			28			
0	1	. 5	Which group of the	he periodic table	is the element in Figure 1 in?	[1 mark]
			Tick one box.			[1
			Group 0			
			Group 2			
			Group 5			
			Group 7			
			Qı	uestion 1 contin	ues on the next page	
					. 0	

0 1 . 6	The atom has a radius of 0.147 nm.		
	What is the radius of the atom in metres?		
	Tick one box.	[1 mark]	
	$1.47 \times 10^{-10} \text{ m}$		
	$1.47 \times 10^{-3} \mathrm{m}$		
	$1.47 \times 10^3 \mathrm{m}$		
	$1.47 \times 10^{10} \mathrm{m}$		
0 1 . 7	The boiling point of the element is –188 °C.		
	What is the state of the element at room temperature (25 °C)?	[1 mark]	
	Tick one box.	[I IIIaIK]	
	gas		
	liquid		
	solid		
			7

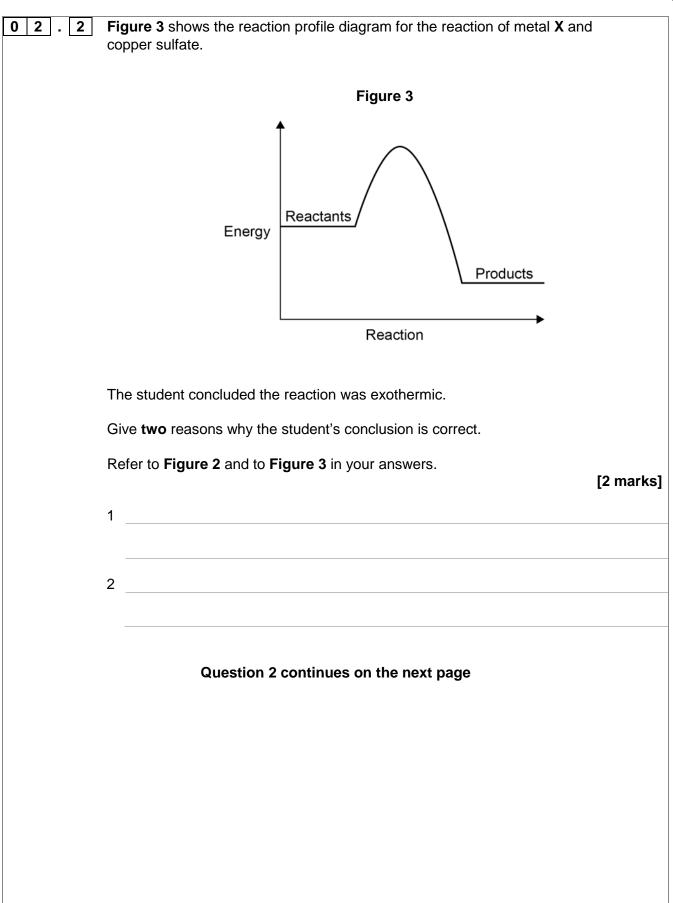

0 2 A student investigated the reaction of metal **X** with copper sulfate solution.

This is the method used.

- 1. Measure the temperature of 100 cm³ of copper sulfate solution.
- 2. Add 2 g of metal X.
- 3. Stir the solution.
- 4. Measure the highest temperature of the solution.

Figure 2 shows the temperature of the solution.

Figure 2



0 2 . 1 Use Figure 2 to complete Table 1.

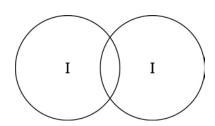
[2 marks]

Table 1

Temperature of the solution before adding metal X	20 °C
Temperature of the solution after adding metal X	°C
Change in temperature of the solution	°C

		8		Do no outsi
0 2 . 3	The student repeated	d the experiment with metals Y and Z .		
	Table 2 shows the re	esults.		
		Table 2		
	Metal	Change in temperature of the solution in °C		
	Y	3		
	z	8		
	Write metals X , Y and	d Z in order of reactivity.		
		Table 1 and Table 2.		
			[1 mark]	
	Most reactive			
	_			
	Least reactive			

0 3	This question is about ammonia and compounds of ammonia.
	Figure 4 represents an ammonia molecule.
	Figure 4
	Ш N Ц
	H — N — H
	H
0 3 . 1	What is the formula of ammonia?
	Tick one box. [1 mark]
	NH ₃
	N3H
	N_3H
	3NH
0 3 . 2	What type of substance is ammonia?
	Tick one box. [1 mark]
	Fullerene
	Giant covalent structure
	Polymer
	Small molecule
	Question 3 continues on the next page


0 3 . 3	Ammonia dissolves in water to produce ammonia solution.	
	Ammonia solultion is alkaline.	
	What value represents the pH of ammonia solution?	[1 mark]
	Tick one box.	[1 mark]
	1	
	3	
	7	
	11	
0 3 . 4	Ammonia solution reacts with an acid to produce the salt ammonium sulfate.	
	Name the acid that ammonia reacts with to produce ammonium sulfate.	[1 mark]

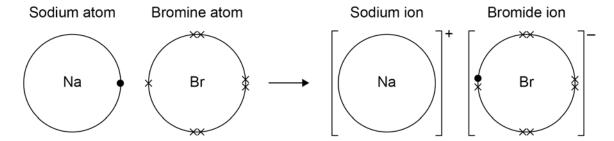
	H		outs
0 3 . 5	The formula of ammonium sulfate is (NH ₄) ₂ SO ₄		•
	Calculate the percentage of sulfur in ammonium sulfate.		
	Use the equation		
	percentage (%) of element = $\frac{\text{relative atomic mass of element}}{\text{relative formula mass of compound}} \times 100$		
	Give your answer to 3 significant figures.		
	Deletine standards (A): II A N. 44 O 40 O 00	[2 marks]	
	Relative atomic masses (A_r): H = 1 N = 14 O = 16 S = 32 Relative formula mass (M_r) of ammonium sulfate = 132		
	Percentage of sulfur =	%	
			_
	Turn over for the next question		

- **0 4** This question is about bonding.
- **0 4 . 1** An iodine atom has 7 electrons in its outer shell.

Figure 5 shows the outer electron shells in an iodine molecule (I₂).

Figure 5

Complete the dot and cross diagram in **Figure 5** to show the bonding in the iodine molecule.


Show only the electrons in the outer shell.

[2 marks]

Figure 6 shows how bromine reacts with sodium to produce sodium bromide.

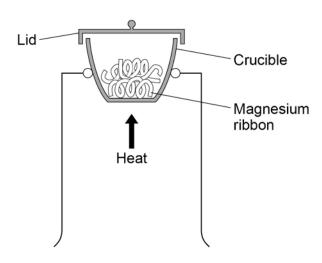
Only the outer shell electrons are shown.

Figure 6

0 4 . 2	How does a sodium atom change into a sodium ion?	[1 mark]
	Tick one box.	
	By gaining an electron	
	By losing an electron	
	By sharing an electron	
0 4 . 3	Describe how the ions in sodium bromide are held together.	[2 marks]
0 4 . 4	Sodium bromide is an ionic compound.	
	What are two properties of sodium bromide?	
	Tick two boxes.	[2 marks]
	Conducts electricity when molten	
	Does not dissolve in water	
	Has a high melting point	
	Has a low boiling point	
	Has weak bonds	
	Turn over for the next question	
	Talli evel lei tile next queetien	

14

0 5


A student investigated the reaction of magnesium with air.

The equation for the reaction is:

$$2Mg(s) + O_2(g) \rightarrow 2MgO(s)$$

Figure 7 shows the apparatus the student used.

Figure 7

This is the method used.

- 1. Measure the mass of a crucible and lid.
- 2. Add magnesium ribbon to the crucible.
- 3. Measure the mass of the crucible, lid and magnesium ribbon.
- 4. Heat the crucible and magnesium ribbon for 10 minutes.
- 5. Lift the lid of the crucible every few minutes.
- 6. Weigh the crucible, lid and product (magnesium oxide) after heating.

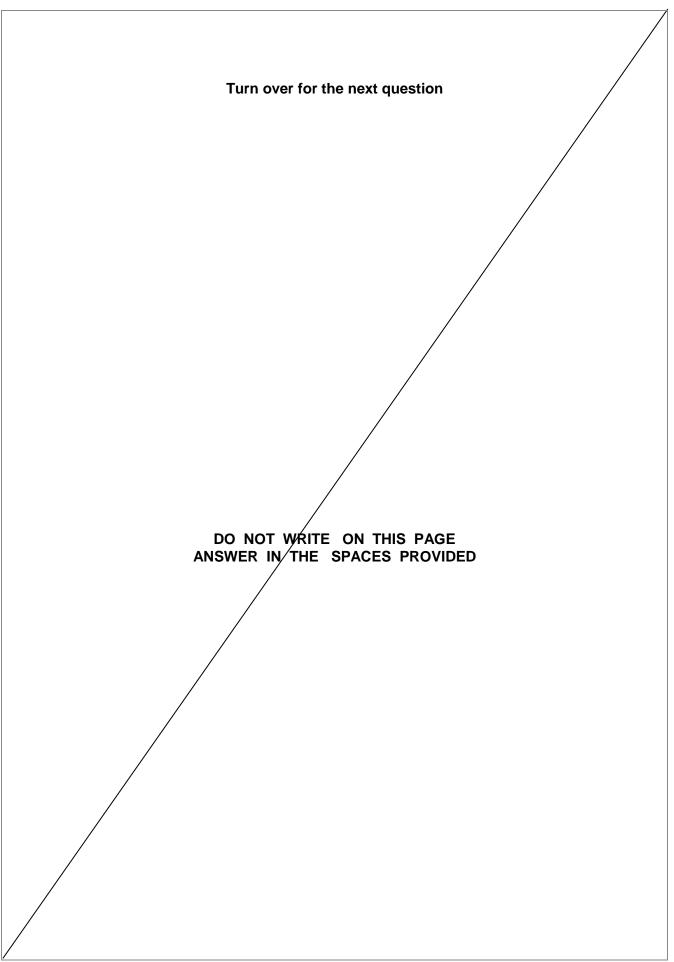

Table 3 shows the student's results.

Table 3

Mass of crucible and lid	52.34 g
Mass of crucible, lid and magnesium ribbon	52.52 g
Mass of crucible, lid and product after heating for 10 minutes	52.63 g

0 5 . 1	Calculate the percentage by mass of magnesium in the product.		
	You should first determine:		
	the mass of magnesium		
	the mass of the product.		
		[3 mar	ks]
	Mass of magnesium =		a
	wass of magnesium =		g
	Mass of product =		g
	Percentage of magnesium =		%
0 5 . 2	Explain why the reaction appears to involve a change in mass.	[2 mar	ke1
		[Z IIIaii	vəl
	Question 5 continues on the next page		

0 5 . 3	What improvement could the student make to obtain a more accurate result? [1 mark] Tick one box.	
	Add more magnesium to the crucible.	
	Heat the crucible, lid and product until the mass is constant.	
	Use a balance measuring to one decimal place.	
	Use a clock instead of a stopwatch.	
0 5 . 4	The student repeated the investigation.	
	The student used:	
	the same crucible and lid	
	the same mass of magnesium.	
	The student did not lift the lid of the crucible during heating.	
	The student obtained a much lower value for the mass of crucible, lid and product in the second investigation.	
	Suggest one reason why. [1 mark]	
		-

0 6

Table 4 shows information about some metals.

Table 4

Metal	Date of discovery and extraction	Percentage (%) of metal in ore	Percentage (%) of Earth's crust containing metal	Annual production in kg
Aluminium	1825	28.0	8.0	5.76×10^{10}
Gold	approximately 3000 BC	Occurs as metal	0.004	3.1 × 10 ⁶
Iron	approximately 3000 BC	29.0	5.0	1.15 × 10 ¹²

0 6 . 1	Why is gold found in the Earth as the pure metal?	[1 mark]
0 6 . 2	Aluminium is the most common metal in the Earth's crust.	
	Suggest why iron was able to be extracted much earlier than aluminium.	[2 marks]

0 6 . 3	Determine the ratio for the annual production of aluminium to iron.
	Use Table 4. [2 marks]
	Ratio of aluminium : iron = 1:
0 6 . 4	Suggest two reasons for the difference in annual production between aluminium and iron. [2 marks]
	1
	2
0 6 . 5	Iron is extracted by heating a mixture of iron oxide and carbon in a blast furnace. Balance the equation for the reaction.
06.6	Name the type of reaction that produces iron from iron oxide. [1 mark]
	Question 6 continues on the next page

0 6 . 7	Iron from the blast furnace is called cast iron.	
	Cast iron contains approximately 4% carbon.	
	Cast iron is harder than pure iron.	
	Figure 8 shows the arrangement of atoms in pure iron and cast iron.	
	Figure 8	
	Pure iron Cast iron	
	Explain why cast iron is harder than pure iron.	
	[3 mar	ks]

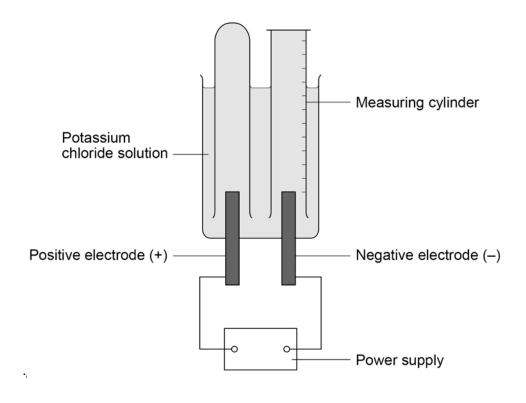
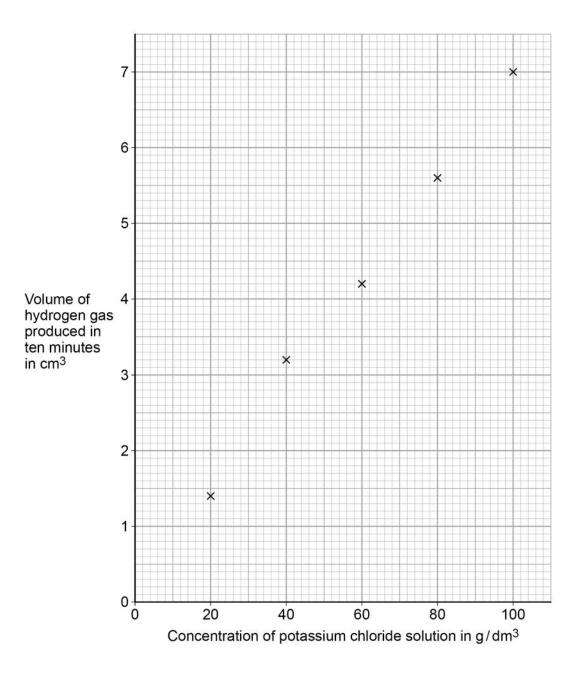
0 7 A student investigated the electrolysis of potassium chloride solution.

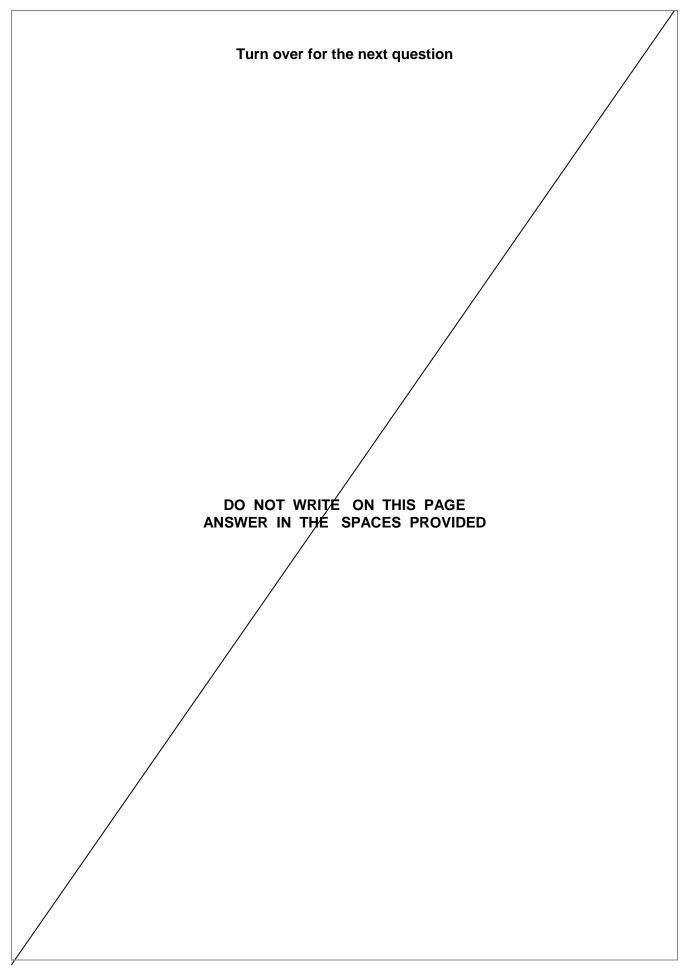
This is the method used.

- 1. Dissolve 20 g of potassium chloride in water.
- 2. Add more water until the total volume of the solution is 1 dm³
- 3. Put the solution in an electrolysis cell.
- 4. Switch the power supply on and start timing.
- 5. Record the volume of hydrogen gas produced in 10 minutes.
- 6. Repeat steps 1–5 with different masses of potassium chloride.

Figure 9 shows the electrolysis cell used.

Figure 9


Figure 10 shows the student's results.

0 7 . 1	The result at a concentration of 40 g/dm ³ is anomalous.	
	What could be the cause of the anomalous result?	54 m and 1
	Tick one box.	[1 mark]
	Decreased voltage from the power supply	
	Potassium chloride is not fully dissolved	
	Some gas has escaped	
	The timing was started too early	
0 7 . 2	What is the interval of the independent variable?	
<u> </u>	What is the interval of the independent variable?	[1 mark]
0 7 . 3	Describe the mathematical relationship shown by the results.	
0 7 . 3	,	
0 7 . 3	Describe the mathematical relationship shown by the results. Use Figure 10 .	[1 mark]
0 7 . 3		[1 mark]
0 7 . 3		[1 mark]
0 7 . 3		[1 mark]
0 7 . 3		[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]
0 7 . 3	Use Figure 10.	[1 mark]

	Tick one box. Hydrogen ions travel faster than potassium ions Hydrogen is a gas Hydrogen is a non-metal Hydrogen is less reactive than potassium	[1 mark]	
0 7 . 5	Predict: • what you would observe at the positive electrode • the substance that will be produced at the positive electrode. Observation Substance produced	[2 marks]	

0 8 This question is about the salt potassium nitrate.

Look at Table 5.

Table 5

Maximum mass of potassium nitrate in g that dissolves in 100 cm ³ of water	Temperature in °C
13	0
33	20
65	40
106	60
167	80
240	100

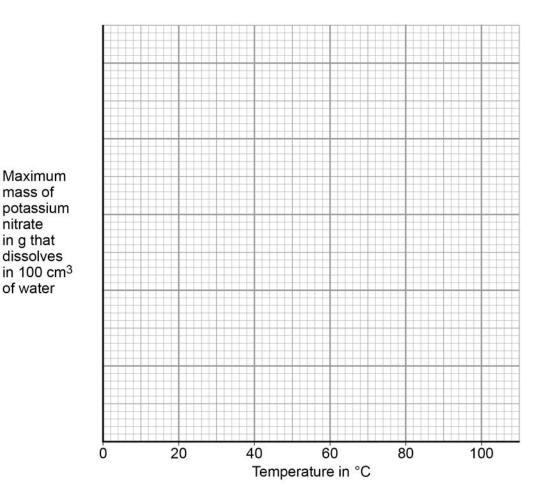
Complete Figure 11. 8

> Maximum mass of

nitrate in g that dissolves

of water

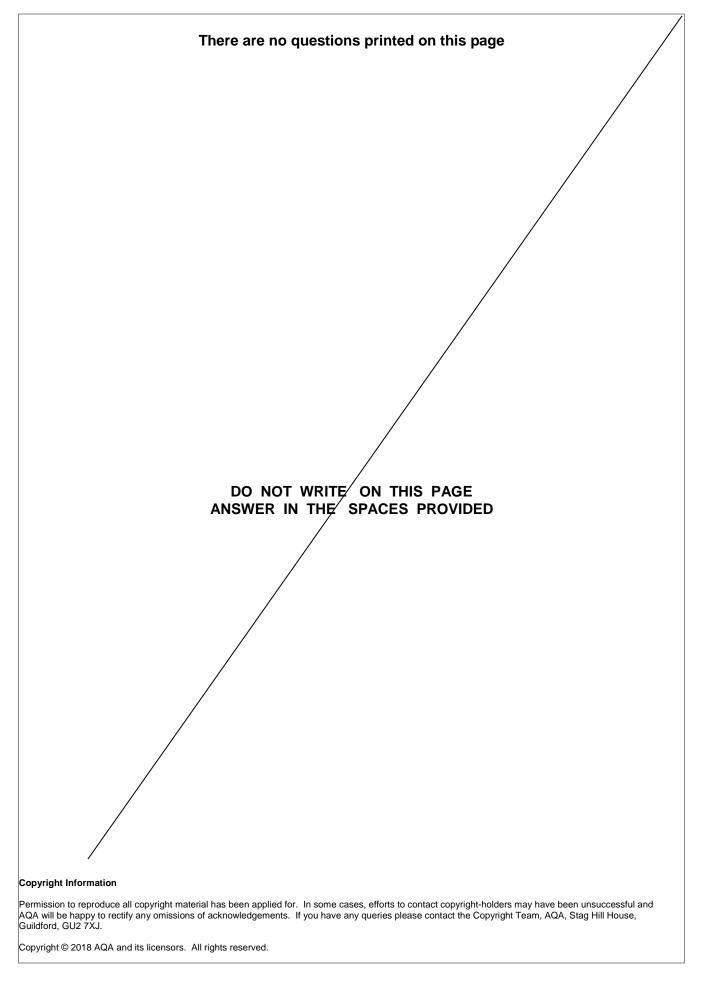
Use the data in Table 5.


You should:

- complete the scale on the y-axis
- plot the results
- draw a line of best fit.

[4 marks]

Figure 11


27

Question 8 continues on the next page

0 8 . 2	A solution of potassium nitrate is made when potassium nitrate dissolves in water.	Jon
	Describe a method you could use to obtain crystals of potassium nitrate from potassium nitrate solution.	
	You should include an explanation of the process by which the crystals are produced from the solution.	
	[6 marks]	
	END OF QUESTIONS	10

8462/8464/C/F

