Please write clearly in	block capitals.	
Centre number	Candidate number	
Surname		
Forename(s)		
Candidate signature		

GCSE SCIENCE PHYSICS

Higher Tier

End of Year 10 test 2018

Materials

For this paper you must have:

- a ruler
- a scientific calculator
- the Physics Equations Sheet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- You are reminded of the need for good English and clear presentation in your answers.

Time allowed: 1 hour

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
7	
TOTAL	

	When the clothes iron is switched on the potential difference between the live the neutral wire is 230 V.	e wire and
0 1 . 5	Write down the equation that links current, potential difference and power.	[1 mark]
0 1 . 6	The current in the live wire is 9.0 A. Calculate the power of the clothes iron.	
	• 	[2 marks]
	Power =	W

Turn over ►

	6	Do not write outside the box
02	Cobalt-60 is a radioactive isotope used to treat cancer.	
02.1	An atom of cobalt-60 can be represented as:	
	27 CO	
	How many protons and neutrons are there in the nucleus of a cobalt-60 atom? [2 marks]	
	Number of protons =	_
	Number of neutrons =	_
02.2	Atoms of cobalt-60 contain protons, neutrons and one other type of particle.	
	Name the other type of atomic particle in an atom of cobalt-60. [1 mark]	
		_

Do not write

03.4	Write down the equation that links gravitational field strength, gravitational p	otential
	energy, height and mass.	[1 mark]
03.5	The bar has a mass of 180 kg.	
	The powerlifter raises the bar 2.1 m.	
	Gravitational field strength = 9.8 N/kg	
	Calculate the increase in the gravitational potential energy store of the bar.	
	Give your answer to 2 significant figures.	
		[3 marks]
	Increase in gravitational potential energy store =	J
03.6	The powerlifter then drops the bar to the floor.	
	What is the maximum increase in the kinetic energy store of the bar?	
		[1 mark]
	Maximum increase in kinetic operavistore –	1
		J
	Turn over for the next question	
	Turn over for the next question	

	11	Do not write outside the
04.3	Another resistor is added in parallel to X and Y.	
	What will happen to the total resistance of the circuit? [1 mark]	-
04.4	The three resistors are then arranged in series.	
	What will happen to the potential difference across resistor X? [1 mark]	-
04.5	How will the total resistance of the series circuit compare to the total resistance of the parallel circuit? [1 mark]	
	Turn over for the next question	6

The student tested different lengths of wire.

For each length of wire, the student measured:

- the current through the wire
- the potential difference across the wire.

Table 1 shows the student's results.

Table 1

Length of wire in cm	Length of Current in milliamperes Potential difference in volts		Resistance in ohms
10.0	64	0.10	1.6
20.0	34	0.11	3.2
30.0	25	0.12	4.8
40.0	19	0.12	X
50.0	16	0.13	8.1
60.0	14	0.13	9.3

				17	Do not write outside the box
) 6].	2	The energy transferred to the water is 300 kJ.	
				The temperature of the water increased from 20 °C to 100 °C.	
				Specific heat capacity of water = 4200 J/kg °C.	
				Calculate the mass of water in the pan.	
				Use the Physics Equations Sheet. [4 marks]	
					_
					_
					_
				Mass of water = kg	
0) 6	1.	3	The gas ring transfers energy to the water.	
		J		Explain why the temperature remains constant at boiling point when the internal energy	,
				is increasing. [3 marks]	
					_
					_
					_
					_
					8
				Turn over for the next question	

Turn ove	er 🕨	
----------	------	--

07.2	When a car hits a hole in the road, the spring shown in Figure 9 compresses by 20 mm.
	The spring constant = 90 kN/m.
	Calculate the energy stored in the spring by this compression. [4 marks]
	Energy stored = J
07.3	After being compressed the spring returns to its original length.
	Describe the changes in energy stored as the car drives over the hole in the road. [4 marks]
	END OF QUESTIONS

Copyright © 2018 AQA and its licensors. All rights reserved.