Chemistry 5.3 - Quantitative Chemistry

| Content | RAG |
| :---: | :---: |
| Recall the law of conservation of mass |  |
| Calculate the relative formula mass of a compound. |  |
| Give examples of reactions that appear to involve a change in mass and explain why the mass appears to change. |  |
| Explain what is meant by measurement uncertainty, use distribution and range to estimate and measure uncertainty |  |
| Recall that chemical amounts are measured in moles. Know about the Avogadro constant \& its value. (HT only) |  |
| Recall that the mass of one mole of a substance in grams is equal to its relative formula mass. (HT only) Use Mr to calculate the number of moles and vice versa |  |
| Interpret chemical equations in terms of moles. (HT only) |  |
| Calculate the masses of substances shown in a balanced symbol equation. (HT only) |  |
| Calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product. (HT only) |  |
| Balance equations using masses and moles. (HT only) |  |
| State what is meant by "limiting reactants" and "reactant in excess". Explain the effect of limiting a reactant. (HT only) |  |
| Recall that the concentration of a solution can be measured in mass per given volume of solution, eg grams per $\mathrm{dm}^{3}\left(\mathrm{~g} / \mathrm{dm}^{3}\right)$. Calculate the mass of a solute in a given volume of a solution |  |
| Recall that concentration can be measured in $\mathrm{mol} / \mathrm{dm}^{3,}$ use this in calculations of mass and concentration. |  |
| Explain how the mass of a solute and the volume of a solution is related to the concentration of the solution. (HT only) |  |
| Explain why it is not always possible to obtain the calculated amount of product from a reaction. Define and calculate percentage yield |  |
| Calculate the theoretical mass of a product from a given mass of reactant and the balanced equation for the reaction. (HT only) |  |


| Define atom economy, explain its importance and calculate atom economy using the balanced <br> equation. |  |
| :--- | :--- |
| explain why a particular reaction pathway is chosen to produce a specified product given appropriate <br> data such as atom economy (if not calculated), yield, rate, equilibrium position and usefulness of by- <br> products (HT only) |  |
| Recall that equal amounts in moles of gases occupy the same volume under the same conditions of <br> temperature and pressure. |  |
| Recall that the volume of one mole of any gas at room temperature and pressure (20oC and 1 <br> atmosphere pressure) is 24 dm3. |  |
| Recall that the volumes of gaseous reactants and products can be calculated from the balanced <br> equation for the reaction. |  |
| Calculate the volume of a gas at room temperature and pressure from its mass and relative formula <br> mass |  |
| Calculate volumes of gaseous reactants and products from a balanced equation and a given volume of <br> a gaseous reactant or product. | Change the subject of a mathematical equation. |

Text in italics $=$ higher tier only.

